Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  decidability
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the paper a decision procedure for S5 is presented which uses a cut-free sequent calculus with additional rules allowing a reduction to normal modal forms. It utilizes the fact that in S5 every formula is equivalent to some 1-degree formula, i.e. a modally-flat formula with modal functors having only boolean formulas in its scope. In contrast to many sequent calculi (SC) for S5 the presented system does not introduce any extra devices. Thus it is a standard version of SC but with some additional simple rewrite rules. The procedure combines the proces of saturation of sequents with reduction of their elements to some normal modal form.
2
Content available remote

Definability within structures related to Pascal’s triangle modulo an integer

100%
EN
Let Sq denote the set of squares, and let $SQ_n$ be the squaring function restricted to powers of n; let ⊥ denote the coprimeness relation. Let $B_n(x,y)=({x+y \atop x}) MOD n$. For every integer n ≥ 2 addition and multiplication are definable in the structures ⟨ℕ; B_n,⊥⟩ and ⟨ℕ; B_n,Sq⟩; thus their elementary theories are undecidable. On the other hand, for every prime p the elementary theory of ⟨ℕ; B_p,SQ_p⟩ is decidable.
3
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Labeled Sequent Calculus for Orthologic

88%
EN
Orthologic (OL) is non-classical logic and has been studied as a part of quantumlogic. OL is based on an ortholattice and is also called minimal quantum logic. Sequent calculus is used as a tool for proof in logic and has been examinedfor several decades. Although there are many studies on sequent calculus forOL, these sequent calculi have some problems. In particular, they do not includeimplication connective and they are mostly incompatible with the cut-eliminationtheorem. In this paper, we introduce new labeled sequent calculus called LGOI, and show that this sequent calculus solve the above problems. It is alreadyknown that OL is decidable. We prove that decidability is preserved when theimplication connective is added to OL.
4
75%
EN
In this paper we consider workflow nets as dynamical systems governed by ordinary difference equations described by a particular class of Petri nets. Workflow nets are a formal model of business processes. Well-formed business processes correspond to sound workflow nets. Even if it seems necessary to require the soundness of workflow nets, there exist business processes with conditional behavior that will not necessarily satisfy the soundness property. In this sense, we propose an analytical method for showing that a workflow net satisfies the classical soundness property using a Petri net. To present our statement, we use Lyapunov stability theory to tackle the classical soundness verification problem for a class of dynamical systems described by Petri nets. This class of Petri nets allows a dynamical model representation that can be expressed in terms of difference equations. As a result, by applying Lyapunov theory, the classical soundness property for workflow nets is solved proving that the Petri net representation is stable. We show that a finite and non-blocking workflow net satisfies the sound property if and only if its corresponding PN is stable, i.e., given the incidence matrix A of the corresponding PN, there exists a Φ strictly positive m vector such that AΦ ≤ 0. The key contribution of the paper is the analytical method itself that satisfies part of the definition of the classical soundness requirements. The method is designed for practical applications, guarantees that anomalies can be detected without domain knowledge, and can be easily implemented into existing commercial systems that do not support the verification of workflows. The validity of the proposed method is successfully demonstrated by application examples.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.