Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
The Ornstein-Uhlenbeck model is one of the most popular stochastic processes. It has found many interesting applications including physical phenomena. However, for many real data, the classical Ornstein-Uhlenbeck process cannot be applied. It is related to the fact that for many phenomena the vectors of observations exhibit so-called heavy-tailed behaviour. In such cases, the modifications of the classical models need to be used. In this paper, we analyze the Ornstein-Uhlenbeck process based on stable distribution. This distribution is one of the most classical members of the heavy-tailed class of distributions. In the literature, one can find various applications of stable processes. However, the heavy-tailed property implies that the classical methods of estimation and statistical investigation cannot be applied. In this paper, we propose a new method of estimation of stable Ornstein-Uhlenbeck process. This technique is based on the alternative measure of dependence, called fractional lower order covariance, which replaces the classical covariance for infinite-variance distribution. The proposed research is a continuation of the authors' previous studies, where the measure called covariation was proposed as the base for the estimation technique. We introduce the stable Ornstein-Uhlenbeck process and remind its main properties. In the main part, we define the new estimator of the of the parameters for discrete representation of Ornstein-Uhlenbeck process. Its effectiveness is checked by Monte Carlo simulations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.