Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  delay
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the present work we give an existence theorem for bounded weak solution of the differential equation \[ \dot{x}(t) = A(t)x(t) + f (t, x(t)),\quad t \geq 0 \] where \(\{A(t) : t \in I\mathbb{R}^+ \}\) is a family of linear operators from a Banach space \(E\) into itself, \(B_r = \{x \in E : \|x\| \leq r\}\) and \(f \colon \mathbb{R}^+ \times B_r \to E\) is weakly-weakly continuous. Furthermore, we give existence theorem for the differential equation with delay \[ \dot{x}(t) = \hat{A}(t) x(t) + f^d (t, θ_t x)\quad \text{if}\ t \in [0, T], \] where \(T, d \gt 0\), \(C_{B_r} ([-d, 0])\) is the Banach space of continuous functions from \([-d, 0]\) into \(B_r\), \(f_d\colon [0, T] \times C_{B_r} ([-d, 0]) \to E\) weakly-weakly continuous function, \(\hat{A}(t)\colon [0,T] \to L(E)\) is strongly measurable and Bochner integrable operator on \([0,T]\) and \(θ_t x(s) = x(t + s)\) for all \(s \in [-d, 0]\).
EN
In this paper, a two-species Lotka-Volterra predator-prey model with two delays is considered. By analyzing the associated characteristic transcendental equation, the linear stability of the positive equilibrium is investigated and Hopf bifurcation is demonstrated. Some explicit formulae for determining the stability and direction of Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using normal form theory and center manifold theory. Some numerical simulations for supporting the theoretical results are also included.
EN
We consider the problem \(\dot{x}(t) \in A(t)x(t) + F (t, θ_t x))\) a.e. on \([0, b]\), \(x = \kappa\) on \([-d, 0]\) in a Banach space \(E\), where \(\kappa\) belongs to the Banach space, \(C_E ([-d, 0])\), of all continuous functions from \([-d, 0]\) into \(E\). A multifunction \(F\) from \([0, b] \times C_E ([-d, 0])\) into the set, \(P_{f_c} (E)\), of all nonempty closed convex subsets of \(E\) is weakly sequentially hemi-continuous, \(θ_t x(s) = x(t + s)\) for all \(s \in [-d, 0]\) and \(\{A(t) : 0 \leq t \leq b\}\) is a family of densely defined closed linear operators generating a continuous evolution operator \(S(t, s)\). Under a generalization of the compactness assumptions, we prove an existence result and give some topological properties of our solution sets that generalizes earlier theorems by Papageorgiou, Rolewicz, Deimling, Frankowska and Cichoń.
4
88%
EN
A realization problem for positive, continuous-time linear systems with reduced numbers of delays in state and in control is formulated and solved. Sufficient conditions for the existence of positive realizations with reduced numbers of delays of a given proper transfer function are established. A procedure for the computation of positive realizations with reduced numbers of delays is presented and illustrated by an example.
5
Content available remote

Realization problem for a class of positive continuous-time systems with delays

88%
EN
The realization problem for a class of positive, continuous-time linear SISO systems with one delay is formulated and solved. Sufficient conditions for the existence of positive realizations of a given proper transfer function are established. A procedure for the computation of positive minimal realizations is presented and illustrated by an example.
6
88%
EN
The classical Cayley-Hamilton theorem is extended to continuous-time linear systems with delays. The matrices of the system with delays satisfy algebraic matrix equations with coefficients of the characteristic polynomial.
EN
We investigate in the present paper, the existence and uniqueness of solutions for functional differential inclusions involving a subdifferential operator in the infinite dimensional setting. The perturbation which contains the delay is single-valued, separately measurable, and separately Lipschitz. We prove, without any compactness condition, that the problem has one and only one solution.
EN
A new modified state variable diagram method is proposed for determination of positive realizations of linear continuoustime systems with delays in state and input vectors. Using the method, it is possible to find a positive realization with reduced numbers of delays for a given transfer matrix. Sufficient conditions for the existence of positive realizations of given proper transfer matrices are established. The proposed method is demonstrated on numerical examples.
Open Mathematics
|
2003
|
tom 1
|
nr 2
141-156
EN
In this work we obtain sufficient conditions for stabilizability by time-delayed feedback controls for the system $$\frac{{\partial w\left( {x,t} \right)}}{{\partial t}} = A(D_x )w(x,t) - A(D_x )u(x,t), x \in \mathbb{R}^n , t > h, $$ where D x=(-i∂/∂x 1,...-i∂/∂x n), A(σ) and B(σ) are polynomial matrices (m×m), det B(σ)≡0 on ℝn, w is an unknown function, u(·,t)=P(D x)w(·,t−h) is a control, h>0. Here P is an infinite differentiable matrix (m×m), and the norm of each of its derivatives does not exceed Γ(1+|σ|2)γ for some Γ, γ∈ℝ depending on the order of this derivative. Necessary conditions for stabilizability of this system are also obtained. In particular, we study the stabilizability problem for the systems corresponding to the telegraph equation, the wave equation, the heat equation, the Schrödinger equation and another model equation. To obtain these results we use the Fourier transform method, the Lojasiewicz inequality and the Tarski-Seidenberg theorem and its corollaries. To choose an appropriate P and stabilize this system, we also prove some estimates of the real parts of the zeros of the quasipolynomial det {Iλ-A(σ)+B(σ)P(σ)e -hλ.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.