Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Let ⟨X,Y⟩ be a duality pair of M-spaces X,Y of measurable functions from Ω ⊂ ℝ ⁿ into $ℝ^d$. The paper deals with Y-weak cluster points ϕ̅ of the sequence $ϕ(·,z_{j}(·))$ in X, where $z_j:Ω → ℝ^m$ is measurable for j ∈ ℕ and $ϕ:Ω×ℝ^m → ℝ^d$ is a Carathéodory function. We obtain general sufficient conditions, under which, for some negligible set $A_ϕ$, the integral $I(ϕ,ν_x):= ∫_{ℝ^m} ϕ(x,λ) dν_x(λ)$ exists for $x ∈ Ω∖ A_ϕ$ and $ϕ̅(x) = I(ϕ,ν_x)$ on $Ω∖ A_ϕ$, where $ν={ν_x}_{x ∈ Ω}$ is a measurable-dependent family of Radon probability measures on $ℝ^m$.
EN
We present two existence results for the Dirichlet elliptic inclusion with an upper semicontinuous multivalued right-hand side in exponential-type Orlicz spaces involving a vector Laplacian, subject to Dirichlet boundary conditions on a domain Ω⊂ ℝ². The first result is obtained via the multivalued version of the Leray-Schauder principle together with the Nakano-Dieudonné sequential weak compactness criterion. The second result is obtained by using the nonsmooth variational technique together with a formula for Clarke's subgradient for Lipschitz integral functionals on "nonregular" Orlicz spaces.
3
Content available remote

The Euler-Lagrange inclusion in Orlicz-Sobolev spaces

100%
EN
We establish the Euler-Lagrange inclusion of a nonsmooth integral functional defined on Orlicz-Sobolev spaces. This result is achieved through variational techniques in nonsmooth analysis and an integral representation formula for the Clarke generalized gradient of locally Lipschitz integral functionals defined on Orlicz spaces.
EN
Let (Ω,μ) be a measure space, E be an arbitrary separable Banach space, $E*_{ω*}$ be the dual equipped with the weak* topology, and g:Ω × E → ℝ be a Carathéodory function which is Lipschitz continuous on each ball of E for almost all s ∈ Ω. Put $G(x): = ∫_{Ω} g(s,x(s))dμ(s)$. Consider the integral functional G defined on some non-$L^{p}$-type Banach space X of measurable functions x: Ω → E. We present several general theorems on sufficient conditions under which any element γ ∈ X* of Clarke's generalized gradient (multivalued C-subgradient) $∂_{C}G(x)$ has the representation $γ(v) = ∫_{Ω} ⟨ζ(s),v(s)⟩dμ(s) (v ∈ X)$ via some measurable function $ζ: Ω → E*_{w*}$ of the associate space X' such that $ζ(s) ∈ ∂_{C}g(s,x(s))$ for almost all s ∈ Ω. Here, given a fixed s ∈ Ω, $∂_{C}g(s,u₀)$ denotes Clarke's generalized gradient for the function g(s,·) at u₀ ∈ E. What concerning X, we suppose that it is either a so-called non-solid Banach M-space (in particular, non-solid generalized Orlicz space) or Köthe-Bochner space (solid space).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.