Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  vertex partition
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

A path(ological) partition problem

100%
EN
Let τ(G) denote the number of vertices in a longest path of the graph G and let k₁ and k₂ be positive integers such that τ(G) = k₁ + k₂. The question at hand is whether the vertex set V(G) can be partitioned into two subsets V₁ and V₂ such that τ(G[V₁] ) ≤ k₁ and τ(G[V₂] ) ≤ k₂. We show that several classes of graphs have this partition property.
EN
A hereditary property R of graphs is said to be reducible if there exist hereditary properties P₁,P₂ such that G ∈ R if and only if the set of vertices of G can be partitioned into V(G) = V₁∪V₂ so that ⟨V₁⟩ ∈ P₁ and ⟨V₂⟩ ∈ P₂. The problem of the factorization of reducible properties into irreducible factors is investigated.
3
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Maximal graphs with respect to hereditary properties

100%
EN
A property of graphs is a non-empty set of graphs. A property P is called hereditary if every subgraph of any graph with property P also has property P. Let P₁, ...,Pₙ be properties of graphs. We say that a graph G has property P₁∘...∘Pₙ if the vertex set of G can be partitioned into n sets V₁, ...,Vₙ such that the subgraph of G induced by V_i has property $P_i$; i = 1,..., n. A hereditary property R is said to be reducible if there exist two hereditary properties P₁ and P₂ such that R = P₁∘P₂. If P is a hereditary property, then a graph G is called P- maximal if G has property P but G+e does not have property P for every e ∈ E([G̅]). We present some general results on maximal graphs and also investigate P-maximal graphs for various specific choices of P, including reducible hereditary properties.
4
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Domination in partitioned graphs

100%
EN
Let V₁, V₂ be a partition of the vertex set in a graph G, and let $γ_i$ denote the least number of vertices needed in G to dominate $V_i$. We prove that γ₁+γ₂ ≤ [4/5]|V(G)| for any graph without isolated vertices or edges, and that equality occurs precisely if G consists of disjoint 5-paths and edges between their centers. We also give upper and lower bounds on γ₁+γ₂ for graphs with minimum valency δ, and conjecture that γ₁+γ₂ ≤ [4/(δ+3)]|V(G)| for δ ≤ 5. As δ gets large, however, the largest possible value of (γ₁+γ₂)/|V(G)| is shown to grow with the order of (logδ)/(δ).
5
Content available remote

On Graphs with Disjoint Dominating and 2-Dominating Sets

100%
EN
A DD2-pair of a graph G is a pair (D,D2) of disjoint sets of vertices of G such that D is a dominating set and D2 is a 2-dominating set of G. Although there are infinitely many graphs that do not contain a DD2-pair, we show that every graph with minimum degree at least two has a DD2-pair. We provide a constructive characterization of trees that have a DD2-pair and show that K3,3 is the only connected graph with minimum degree at least three for which D ∪ D2 necessarily contains all vertices of the graph.
6
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Uniquely partitionable graphs

100%
EN
Let 𝓟₁,...,𝓟ₙ be properties of graphs. A (𝓟₁,...,𝓟ₙ)-partition of a graph G is a partition of the vertex set V(G) into subsets V₁, ...,Vₙ such that the subgraph $G[V_i]$ induced by $V_i$ has property $𝓟_i$; i = 1,...,n. A graph G is said to be uniquely (𝓟₁, ...,𝓟ₙ)-partitionable if G has exactly one (𝓟₁,...,𝓟ₙ)-partition. A property 𝓟 is called hereditary if every subgraph of every graph with property 𝓟 also has property 𝓟. If every graph that is a disjoint union of two graphs that have property 𝓟 also has property 𝓟, then we say that 𝓟 is additive. A property 𝓟 is called degenerate if there exists a bipartite graph that does not have property 𝓟. In this paper, we prove that if 𝓟₁,..., 𝓟ₙ are degenerate, additive, hereditary properties of graphs, then there exists a uniquely (𝓟₁,...,𝓟ₙ)-partitionable graph.
7
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

A survey of hereditary properties of graphs

88%
EN
In this paper we survey results and open problems on the structure of additive and hereditary properties of graphs. The important role of vertex partition problems, in particular the existence of uniquely partitionable graphs and reducible properties of graphs in this structure is emphasized. Many related topics, including questions on the complexity of related problems, are investigated.
EN
We consider the problem of the existence of uniquely partitionable planar graphs. We survey some recent results and we prove the nonexistence of uniquely (𝓓₁,𝓓₁)-partitionable planar graphs with respect to the property 𝓓₁ "to be a forest".
9
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

The directed path partition conjecture

88%
EN
The Directed Path Partition Conjecture is the following: If D is a digraph that contains no path with more than λ vertices then, for every pair (a,b) of positive integers with λ = a+b, there exists a vertex partition (A,B) of D such that no path in D⟨A⟩ has more than a vertices and no path in D⟨B⟩ has more than b vertices. We develop methods for finding the desired partitions for various classes of digraphs.
EN
A recent result of Henning and Southey (A note on graphs with disjoint dominating and total dominating set, Ars Comb. 89 (2008), 159-162) implies that every connected graph of minimum degree at least three has a dominating set D and a total dominating set T which are disjoint. We show that the Petersen graph is the only such graph for which D∪T necessarily contains all vertices of the graph.
11
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Detour chromatic numbers

75%
EN
The nth detour chromatic number, χₙ(G) of a graph G is the minimum number of colours required to colour the vertices of G such that no path with more than n vertices is monocoloured. The number of vertices in a longest path of G is denoted by τ( G). We conjecture that χₙ(G) ≤ ⎡(τ(G))/n⎤ for every graph G and every n ≥ 1 and we prove results that support the conjecture. We also present some sufficient conditions for a graph to have nth chromatic number at most 2.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.