We formulate a version of the T1 theorem which enables us to treat singular integrals whose kernels need not satisfy the usual smoothness conditions. We also prove a weighted version. As an application of the general theory, we consider a class of multilinear singular integrals in $ℝ^n$ related to the first Calderón commutator, but with a kernel which is far less regular.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A weak molecule condition is given for the Triebel-Lizorkin spaces Ḟ_p^{α,q}, with 0 < α < 1 and 1 < p, q < ∞. As an easy corollary, one may deduce, by atomic-molecular methods, a Triebel-Lizorkin space "T1" Theorem of Han and Sawyer, and Han, Jawerth, Taibleson and Weiss, for Calderón-Zygmund kernels K(x,y) which are not assumed to satisfy any regularity condition in the y variable.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.