Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
autora:  Aarts J. M.
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
CONTENTS I Introduction  1.1. Introductory remarks.................................................. 5  1.2. Baire spaces............................................................... 6  1.3. Completeness properties......................................... 8  1.4. Conventions................................................................. 9 II. Global completeness  2.1. The global completeness properties..................... 11  2.2. Products and subspaces.......................................... 13  2.3. Mappings...................................................................... 15  2.4. Examples..................................................................... 17 III. Moore spaces  3.1. Moore completeness and Rudin completeness............................... 20  3.2. Countable global completeness in Moore spaces........................... 21  3.3. Moore spaces and Baire spaces......................................................... 24 IV. Local and almost completeness  4.1. Dense complete subspaces................................................................. 20 4.2. Products and subspaccs.................................................................................... 28 4.3. Mappings................................................................................................................ 30 V. Additional remarks  5.1. Miscellaneous topics.............................................................................. 34  5.2. Relations between the completeness properties............................. 37  5.3. Open problems........................................................................................ 40 References.................................................................................................................... 42
2
Content available remote

The dimension of remainders of rim-compact spaces

93%
EN
Answering a question of Isbell we show that there exists a rim-compact space X such that every compactification Y of X has dim(Y\X)≥ 1.
3
Content available remote

On composants of the bucket handle

56%
4
Content available remote

Covering dimension modulo a class of spaces

56%
5
Content available remote

Completeness degree (A generalization of dimension)

55%
7
Content available remote

Flows on one-dimensional spaces

47%
8
Content available remote

A characterization of strong inductive dimension

46%
9
Content available remote

The structure of orbits in dynamical systems

46%
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.