Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  interval analysis
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Reliable robust path planning with application to mobile robots

100%
EN
This paper is devoted to path planning when the safety of the system considered has to be guaranteed in the presence of bounded uncertainty affecting its model. A new path planner addresses this problem by combining Rapidly-exploring Random Trees (RRT) and a set representation of uncertain states. An idealized algorithm is presented first, before a description of one of its possible implementations, where compact sets are wrapped into boxes. The resulting path planner is then used for nonholonomic path planning in robotics.
2
Content available remote

Interval analysis for certified numerical solution of problems in robotics

100%
EN
Interval analysis is a relatively new mathematical tool that allows one to deal with problems that may have to be solved numerically with a computer. Examples of such problems are system solving and global optimization, but numerous other problems may be addressed as well. This approach has the following general advantages: (a) it allows to find solutions of a problem only within some finite domain which make sense as soon as the unknowns in the problem are physical parameters; (b) numerical computer round-off errors are taken into account so that the solutions are guaranteed; (c) it allows one to take into account the uncertainties that are inherent to a physical system. Properties (a) and (c) are of special interest in robotics problems, in which many of the variables are parameters that are measured (i.e., known only up to some bounded errors) while the modeling of the robot is based on parameters that are submitted to uncertainties (e.g., because of manufacturing tolerances). Taking into account these uncertainties is essential for many robotics applications such as medical or space robotics for which safety is a crucial issue. A further inherent property of interval analysis that is of interest for robotics problems is that this approach allows one to deal with the uncertainties that are unavoidable in robotics. Although the basic principles of interval analysis are easy to understand and to implement, this approach will be efficient only if the right heuristics are used and if the problem at hand is formulated appropriately. In this paper we will emphasize various robotics problems that have been solved with interval analysis, many of which are currently beyond the reach of other mathematical approaches.
3
Content available remote

Verified solution method for population epidemiology models with uncertainty

88%
EN
Epidemiological models can be used to study the impact of an infection within a population. These models often involve parameters that are not known with certainty. Using a method for verified solution of nonlinear dynamic models, we can bound the disease trajectories that are possible for given bounds on the uncertain parameters. The method is based on the use of an interval Taylor series to represent dependence on time and the use of Taylor models to represent dependence on uncertain parameters and/or initial conditions. The use of this method in epidemiology is demonstrated using the SIRS model, and other variations of Kermack-McKendrick models, including the case of time-dependent transmission.
EN
The paper deals with the modeling and fault-tolerant control of a real battery assembly system which is under implementation at the RAFI GmbH company (one of the leading electronic manufacturing service providers in Germany). To model and control the battery assembly system, a unified max-plus algebra and model predictive control framework is introduced. Subsequently, the control strategy is enhanced with fault-tolerance features that increase the overall performance of the production system being considered. In particular, it enables tolerating (up to some degree) mobile robot, processing and transportation faults. The paper discusses also robustness issues, which are inevitable in real production systems. As a result, a novel robust predictive fault-tolerant strategy is developed that is applied to the battery assembly system. The last part of the paper shows illustrative examples, which clearly exhibit the performance of the proposed approach.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.