Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  global optimization
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Phenotypic evolution with a mutation based on symmetric α-stable distributions

100%
EN
Multidimensional Symmetric α-Stable (SαS) mutations are applied to phenotypic evolutionary algorithms. Such mutations are characterized by non-spherical symmetry for α<2 and the fact that the most probable distance of mutated points is not in a close neighborhood of the origin, but at a certain distance from it. It is the so-called surrounding effect (Obuchowicz, 2001b; 2003b). For α=2, the SαS mutation reduces to the Gaussian one, and in the case of α=1, the Cauchy mutation is obtained. The exploration and exploitation abilities of evolutionary algorithms, using SαS mutations for different α, are analyzed by a set of simulation experiments. The obtained results prove the important influence of the surrounding effect of symmetric α-stable mutations on both the abilities considered.
EN
A novel, neural network controlled, dynamic evolutionary algorithm is proposed for the purposes of molecular geometry optimization. The approach is tested for selected model molecules and some molecular systems of importance in biochemistry. The new algorithm is shown to compare favorably with the standard, statically parametrized memetic algorithm.
3
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

A primal-dual integral method in global optimization

88%
EN
Using the Fenchel conjugate $F^c$ of Phú's Volume function F of a given essentially bounded measurable function f defined on the bounded box D ⊂ Rⁿ, the integral method of Chew and Zheng for global optimization is modified to a superlinearly convergent method with respect to the level sequence. Numerical results are given for low dimensional functions with a strict global essential supremum.
4
Content available remote

The island model as a Markov dynamic system

88%
EN
Parallel multi-deme genetic algorithms are especially advantageous because they allow reducing the time of computations and can perform a much broader search than single-population ones. However, their formal analysis does not seem to have been studied exhaustively enough. In this paper we propose a mathematical framework describing a wide class of island-like strategies as a stationary Markov chain. Our approach uses extensively the modeling principles introduced by Vose, Rudolph and their collaborators. An original and crucial feature of the framework we propose is the mechanism of inter-deme agent operation synchronization. It is important from both a practical and a theoretical point of view. We show that under a mild assumption the resulting Markov chain is ergodic and the sequence of the related sampling measures converges to some invariant measure. The asymptotic guarantee of success is also obtained as a simple issue of ergodicity. Moreover, if the cardinality of each island population grows to infinity, then the sequence of the limit invariant measures contains a weakly convergent subsequence. The formal description of the island model obtained for the case of solving a single-objective problem can also be extended to the multi-objective case.
EN
We present a random perturbation of the projected variable metric method for solving linearly constrained nonsmooth (i.e., nondifferentiable) nonconvex optimization problems, and we establish the convergence to a global minimum for a locally Lipschitz continuous objective function which may be nondifferentiable on a countable set of points. Numerical results show the effectiveness of the proposed approach.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.