Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Riemann zeta-function
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Rapidly convergent series representations for ζ(2n+1) and their χ-analogue

100%
2
Content available remote

On some problems involving Hardy’s function

100%
Open Mathematics
|
2010
|
tom 8
|
nr 6
1029-1040
EN
Some problems involving the classical Hardy function $$ Z\left( t \right) = \zeta \left( {\frac{1} {2} + it} \right)\left( {\chi \left( {\frac{1} {2} + it} \right)} \right)^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} , \zeta \left( s \right) = \chi \left( s \right) \zeta \left( {1 - s} \right) $$, are discussed. In particular we discuss the odd moments of Z(t) and the distribution of its positive and negative values.
3
Content available remote

Power moments of the error term in the approximate functional equation for ζ²(s)

100%
Acta Arithmetica
|
1993
|
tom 65
|
nr 2
137-145
EN
We prove an explicit formula of Atkinson type for the error term in the asymptotic formula for the mean square of the product of the Riemann zeta-function and a Dirichlet polynomial. To deal with the case when coefficients of the Dirichlet polynomial are complex, we apply the idea of the first author in his study on mean values of Dirichlet L-functions.
5
Content available remote

On the riemann zeta-function and the divisor problem

75%
Open Mathematics
|
2004
|
tom 2
|
nr 4
494-508
EN
Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of $$\left| {\varsigma \left( {\tfrac{1}{2} + it} \right)} \right|$$ . If $$E^* \left( t \right) = E\left( t \right) - 2\pi \Delta ^* \left( {t / 2\pi } \right)$$ with $$\Delta ^* \left( x \right) = - \Delta \left( x \right) + 2\Delta \left( {2x} \right) - \tfrac{1}{2}\Delta \left( {4x} \right)$$ , then we obtain $$\int_0^T {\left( {E^* \left( t \right)} \right)^4 dt \ll _e T^{16/9 + \varepsilon } } $$ . We also show how our method of proof yields the bound $$\sum\limits_{r = 1}^R {\left( {\int_{tr - G}^{tr + G} {\left| {\varsigma \left( {\tfrac{1}{2} + it} \right)} \right|^2 dt} } \right)^4 \ll _e T^{2 + e} G^{ - 2} + RG^4 T^\varepsilon } $$ , where T 1/5+ε≤G≪T, T
6
Content available remote

On the riemann zeta-function and the divisor problem II

75%
Open Mathematics
|
2005
|
tom 3
|
nr 2
203-214
EN
Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of $$\left| {\zeta \left( {\frac{1}{2} + it} \right)} \right|$$ . If E *(t)=E(t)-2πΔ*(t/2π) with $$\Delta *\left( x \right) + 2\Delta \left( {2x} \right) - \frac{1}{2}\Delta \left( {4x} \right)$$ , then we obtain $$\int_0^T {\left| {E*\left( t \right)} \right|^5 dt} \ll _\varepsilon T^{2 + \varepsilon } $$ and $$\int_0^T {\left| {E*\left( t \right)} \right|^{\frac{{544}}{{75}}} dt} \ll _\varepsilon T^{\frac{{601}}{{225}} + \varepsilon } .$$ It is also shown how bounds for moments of | E *(t)| lead to bounds for moments of $$\left| {\zeta \left( {\frac{1}{2} + it} \right)} \right|$$ .
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.