Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

Ograniczanie wyników

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Bing maps and finite-dimensional maps

100%
EN
Let X and Y be compacta and let f:X → Y be a k-dimensional map. In [5] Pasynkov stated that if Y is finite-dimensional then there exists a map $g : X → \mathbb{I}^k$ such that dim (f × g) = 0. The problem that we deal with in this note is whether or not the restriction on the dimension of Y in the Pasynkov theorem can be omitted. This problem is still open.  Without assuming that Y is finite-dimensional Sternfeld [6] proved that there exists a map $g : X → \mathbb{I}^k$ such that dim (f × g) = 1. We improve this result of Sternfeld showing that there exists a map $g : X → mathbb{I}^{k+1}$ such that dim (f × g) =0. The last result is generalized to maps f with weakly infinite-dimensional fibers.  Our proofs are based on so-called Bing maps. A compactum is said to be a Bing compactum if its compact connected subsets are all hereditarily indecomposable, and a map is said to be a Bing map if all its fibers are Bing compacta. Bing maps on finite-dimensional compacta were constructed by Brown [2]. We construct Bing maps for arbitrary compacta. Namely, we prove that for a compactum X the set of all Bing maps from X to $\mathbb{I}$ is a dense $G_δ$-subset of $C(X, \mathbb{I})$.
2
Content available remote

Inessentiality with respect to subspaces

100%
EN
Let X be a compactum and let $A={(A_i,B_i):i=1,2,...}$ be a countable family of pairs of disjoint subsets of X. Then A is said to be essential on Y ⊂ X if for every closed $F_i$ separating $A_i$ and $B_i$ the intersection $(∩ F_i) ∩ Y $ is not empty. So A is inessential on Y if there exist closed $F_i$ separating $A_i$ and $B_i$ such that $∩ F_i$ does not intersect Y. Properties of inessentiality are studied and applied to prove:  Theorem. For every countable family of pairs of disjoint open subsets of a compactum X there exists an open set G ∩ X on which A is inessential and for every positive-dimensional Y ∩ X ╲ G there exists an infinite subfamily B ∩ A which is essential on Y.  >This theorem and its generalization provide a new approach for constructing hereditarily infinite-dimensional compacta not containing subspaces of positive dimension which are weakly infinite-dimensional or C-spaces.
3
Content available remote

Hyperspaces of two-dimensional continua

63%
EN
Let X be a compact metric space and let C(X) denote the space of subcontinua of X with the Hausdorff metric. It is proved that every two-dimensional continuum X contains, for every n ≥ 1, a one-dimensional subcontinuum $T_n$ with $dim C (T_n) ≥ n$. This implies that X contains a compact one-dimensional subset T with dim C (T) = ∞.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.