Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

The mean square of the divisor function

100%
EN
Let d(n) be the divisor function. In 1916, S. Ramanujan stated without proof that $∑_{n≤x} d²(n) = xP(log x) + E(x)$, where P(y) is a cubic polynomial in y and $E(x) = O(x^{3/5 + ε})$, with ε being a sufficiently small positive constant. He also stated that, assuming the Riemann Hypothesis (RH), $E(x)=O(x^{1/2 + ε})$. In 1922, B. M. Wilson proved the above result unconditionally. The direct application of the RH would produce $E(x) = O(x^{1/2}(log x)⁵loglog x)$. In 2003, K. Ramachandra and A. Sankaranarayanan proved the above result without any assumption. In this paper, we prove $E(x) = O(x^{1/2}(log x)⁵)$.
2
Content available remote

The distribution of Fourier coefficients of cusp forms over sparse sequences

100%
EN
Let $λ_f(n)$ be the nth normalized Fourier coefficient of a holomorphic Hecke eigenform $f(z) ∈ S_{k}(Γ)$. We establish that $∑_{n ≤ x}λ_f^2(n^j) = c_{j} x + O(x^{1-2/((j+1)^2+1)})$ for j = 2,3,4, which improves the previous results. For j = 2, we even establish a better result.
3
Content available remote

On the Riesz means of n/ϕ(n) - III

100%
EN
Let ϕ(n) denote the Euler totient function. We study the error term of the general kth Riesz mean of the arithmetical function n/ϕ(n) for any positive integer k ≥ 1, namely the error term $E_k(x)$ where $1/k! ∑_{n≤x} n/ϕ(n) (1 - n/x)^{k} = M_k(x) + E_k(x)$. For instance, the upper bound for |E_k(x)| established here improves the earlier known upper bounds for all integers k satisfying $k ≫ (log x)^{1+ϵ}$.
4
Content available remote

On the moments of the Carmichael λ function

100%
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.