Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Remarks on measurable Boolean algebras and sequential cardinals

100%
EN
The paper offers a generalization of Kalton-Roberts' theorem on uniformly exhaustive Maharam's submeasures to the case of arbitrary sequentially continuous functionals. Applying the result one can reduce the problem of measurability of sequential cardinals to the question whether sequentially continuous functionals are uniformly exhaustive.
2
Content available remote

An example of a non-topologizable algebra

63%
EN
We present an example of an algebra that is generated by $ω_1$ elements, and cannot be made a topological algebra. This answers a problem posed by W. Żelazko.
3
51%
EN
Following Banakh and Gabriyelyan (2016) we say that a Tychonoff space X is an Ascoli space if every compact subset 𝒦 of $C_{k}(X)$ is evenly continuous; this notion is closely related to the classical Ascoli theorem. Every $k_{ℝ}$-space, hence any k-space, is Ascoli. Let X be a metrizable space. We prove that the space $C_{k}(X)$ is Ascoli iff $C_{k}(X)$ is a $k_{ℝ}$-space iff X is locally compact. Moreover, $C_{k}(X)$ endowed with the weak topology is Ascoli iff X is countable and discrete. Using some basic concepts from probability theory and measure-theoretic properties of ℓ₁, we show that the following assertions are equivalent for a Banach space E: (i) E does not contain an isomorphic copy of ℓ₁, (ii) every real-valued sequentially continuous map on the unit ball $B_{w}$ with the weak topology is continuous, (iii) $B_{w}$ is a $k_{ℝ}$-space, (iv) $B_{w}$ is an Ascoli space. We also prove that a Fréchet lcs F does not contain an isomorphic copy of ℓ₁ iff each closed and convex bounded subset of F is Ascoli in the weak topology. Moreover we show that a Banach space E in the weak topology is Ascoli iff E is finite-dimensional. We supplement the last result by showing that a Fréchet lcs F which is a quojection is Ascoli in the weak topology iff F is either finite-dimensional or isomorphic to $𝕂^{ℕ}$, where 𝕂 ∈ {ℝ,ℂ}.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.