Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The convexity and compactness in the weak operator topology of the image and pre-image of a generalized fractional linear transformation is established. As an application the exponential dichotomy of solutions to evolution problems of the parabolic type is proved.
EN
We study dichotomous behavior of solutions to a non-autonomous linear difference equation in a Hilbert space. The evolution operator of this equation is not continuously invertible and the corresponding unstable subspace is of infinite dimension in general. We formulate a condition ensuring the dichotomy in terms of a sequence of indefinite metrics in the Hilbert space. We also construct an example of a difference equation in which dichotomous behavior of solutions is not compatible with the signature of the indefinite metric.
EN
The present paper consists of two parts. In Section 1 we consider fractional-linear transformations (f.-l.t. for brevity) F in the space $ℒ(X_1,X_2)$ of all linear bounded operators acting from $X_1$ into $X_2$, where $X_1, X_2$ are Banach spaces. We show that in the case of Hilbert spaces $X_1, X_2$ the image F(ℬ) of any (open or closed) ball ℬ ⊂ D(F) is convex, and if ℬ is closed, then F(ℬ) is compact in the weak operator topology (w.o.t.) (Theorem 1.2). These results extend the corresponding results on compactness obtained in [3], [4] under some additional restrictions imposed on F. We also establish that the convexity of the image of f.-l.t. is a characteristic property of Hilbert spaces, that is, if for the f.-l.t. $F:K → (I+K)^{-1}$ the image $F(𝘒)$ of the open unit ball 𝘒 of the space ℒ(X) is convex, then X is a Hilbert space (Theorem 1.3). In Section 2 we apply the compactness of F(𝘒̅) for the closed unit operator ball 𝘒̅ to the study of the behavior of solutions to evolution problems in a Hilbert space ℋ. Namely, we establish the exponential dichotomy of solutions for the so-called hyperbolic case (such that the evolution operator is invertible). This is an extension of Theorem 1.1 of [5], where the corresponding assertion was established for the particular case of a Pontryagin space ℋ.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.