PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 7 |
Tytuł artykułu

A hisotry of two theorems of calculus: M. Rolle, B. Bolzano, A. Cauchy

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
PL
Rozpatrzymy historię znanego twierdzenia Rolle’a: Jeżeli funkcja jest ciągła na [a, b], różniczkowalna w (a, b) ij{a) =j{b), to w (a, b) istnieje chociaż jeden punkt с taki, że    f ‘(c) = 0, a także historię związanego z nim twierdzenia o pierwiastkach funkcji  ciągłej: Jeżelifunkcja fje s t ciągła na [a, b] i ma różne znaki na końcach przedziału, to w (a, b) znajdzie się chociaż jeden punkt с taki, żeflc) = 0. Twierdzenie to w XX wieku zostało nazwane twierdzeniem Bolzano-Cauchy'ego.
EN
The paper is devoted to a story of the well-known Rolle's theorem: If the function is continuous on [a, b], differentiable in  (a, b)  and  f (a) = f (b), then  there exists in  (a, b ) at least one point  c  such that f'(c) = 0. A history of the associated statements about the roots of a continuous function: If the function  f  is continuous on  [a, b]  and has different signs at the ends of the interval, then in  (a, b) there is at least one point  c such that  f (c) = 0. This theorem in the twentieth century has been called the Bolzano-Cauchy's theorem.
Rocznik
Tom
7
Opis fizyczny
Daty
wydano
2013
online
2014-05-17
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_14708_am_v7i0_572
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.