PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 1 | 48-57
Tytuł artykułu

Signals generated in memristive circuits

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Signals generated in circuits that include nano-structured elements typically have strongly distinct characteristics, particularly the hysteretic distortion. This is due to memristance, which is one of the key electronic properties of nanostructured materials. In this article, we consider signals generated from a memrsitive circuit model. We demonstrate numerically that such signals can be efficiently represented in certain custom-designed nonorthogonal bases. The proposed method ensures that the actual numerical representation can be implemented as a fast, O(N logN), algorithm. In addition, we discuss the possibility of modelling the hysteretic distortion via fast numerical transforms.
Wydawca
Rocznik
Tom
1
Strony
48-57
Opis fizyczny
Daty
otrzymano
2012-08-30
poprawiono
2012-10-30
zaakceptowano
2012-10-30
online
2012-11-13
Twórcy
autor
  • Department of Mathematics and Statistics, University of Saskatchewan, 106 Wiggins Road, Saskatoon, SK S7N 5E6, Canada, sowa@math.usask.ca
Bibliografia
  • F. Alibart, L. Gao, B.D. Hoskins, D. B. Strukov. High precision tuning of state for memristive devices by adaptablevariation-tolerant algorithm. Nanotechnology, 23, 075201 (7pp) (2012).[PubMed][Crossref][WoS]
  • A. Beurling. The Collected Works of Arno Beurling, Vol. 2: Harmonic Analysis, Contemp. Math., Birkhäuser, Boston,378–380 (1989).
  • K. Chandrasekharan. Arithmetical Functions, Springer-Verlag, New York, Heidelberg, Berlin (1970).
  • L.O. Chua. Memristor - the missing circuit element. IEEE Trans. Circuit Theory, 18, 507–519 (1971).
  • L. O. Chua and S. M. Kang. Memristive Devices and Systems. Proceedings of the IEEE, 64, 209-223 (1976).[Crossref]
  • G.Z. Cohen, Y.V. Pershin, and M. Di Ventura. Second and higher harmonics generation with memristive circuits. Appl.Phys. Let. 100, 133109 (2012).
  • S. Datta. Nanoscale device modeling: the Green’s function method. Superlattices and Microstructures, 28, 253–278(2000).[Crossref]
  • B. Dziurla, R. Newcomb. The Drazin inverse and semi-state equations. In: P. Dewilde (ed.). Proceedings of theInternational Symposium on Mathematical Theory of Networks and Systems. Delft, Netherlands, pp. 283–289(1979).
  • H. Hedenmalm, P. Lindqvist, and K. Seip. A Hilbert Space of Dirichlet Series and Systems of Dialated Functionsin L2(0; 1). Duke Math. J., 86, 1–37 (1997).[Crossref]
  • M. Itoh, L.O. Chua. Memristor oscillators. International Journal of Bifurcation and Chaos, 18, 3183–3206 (2008).[Crossref][WoS]
  • T.H. Kim, E.Y. Jang, N.J. Lee, D.J. Choi, K.-J. Lee, J.T. Jang, et. al. Nanoparticle Assemblies as Memristors. NanoLett., 9, 2229–2233 (2009).[WoS]
  • F. Maucher, S. Skupin and W. Krolikowski. Collapse in the nonlocal nonlinear Schrödinger equation. Nonlinearity,24, 1987–2001 (2011).[Crossref][WoS]
  • R.V.N. Melnik, B. Lassen, L.C. Lew Yan Voon, M. Willatzen, C. Galeriu. Acccounting for Nonlinearities in MathematicalModelling of Quantum Dot Structures. Discrete and Contin. Dyn. Syst., suppl., 642–651 (2005).
  • M. Miranda. The Threat of Semiconductor Variability. IEEE Spectrum, July 2012
  • R.W. Newcomb. The semistate description of nonlinear time-variable circuits. IEEE Transactions on Circuits andSystems, 28, 62–71 (1981).[Crossref]
  • M. Paulsson, F. Zahid, S. Datta. Resistance of a molecule. In: W.A. Goddart III et al. (editors), Handbook ofNanoscience, Engineering, and Technology, CRC Press (2003).
  • T. Prodromakis and C. Toumazou. A Review on Memristive Devices and Applications. IEEE Conference Proceedings:Electronics, Circuits and Systems (ICECS), 2010 17th International Conference on, 12-15 Dec 2010, 934–937.
  • R. Riaza and C. Tischendorf. Semistate models of electrical circuits including memristors. Int. J. of Circ. Theor. Appl.,39, 607–627 (2011).[Crossref]
  • R. Riaza and C. Tischendorf. Structural characterization of classical and memristive circuits with purely imaginaryeigenvalues. Int. J. of Circ. Theor. Appl., (2011). Published online in Wiley Online Library (wileyonlinelibrary.com)DOI: 10.1002/cta.798[Crossref]
  • D. Shoenberg. Magnetic Oscillations in Metals, Cambridge University Press, Cambridge (1984), (new edition 2009)
  • G. Snider, R. Amerson, D. Carter, H. Abdalla, and M. Sh. Qureshi. From Synapses to Circuitry: Using MemristiveMemory to Explore the Electronic Brain. Computer (Published by the IEEE Computer Society), 44 (2), 21–28(2011).[Crossref]
  • A. Sowa. Spectra of nonlocally bound quantum systems. Russ. J. Math. Phys., 18, 227–241, (2011).
  • A. Sowa. On an eigenvalue problem with a reciprocal–linear term. Waves in Random and Complex Media, 22,186–206 (2012).
  • A. Sowa. A fast-transform basis with hysteretic features. IEEE Conference Proceedings: Electrical and ComputerEngineering (CCECE), 2011 24th Canadian Conference on, 8-11 May 2011, 253-257.
  • A. Sowa. Factorizing matrices by Dirichlet multiplication. Lin. Alg. Appl., to appear
  • A. Sowa. The Dirichlet ring and unconditional bases in L2[0; 2Π]. (submitted)[WoS]
  • A. Sowa. Magnetic Oscillations and Maxwell Theory. Phys. Lett. A, 228, 347–350 (1997).[Crossref]
  • J.C. Sprott. Elegant Chaos. World Scientific Publishing Co, London (2010).
  • D.B. Strukov, G.S. Snider, D.R. Stewart, and R.S. Williams. The missing memristor found. Nature Letters, 453,80–83 (2008).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_nsmmt-2012-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.