Download PDF - Wavelet bases in $L^{p}(ℝ)$
ArticleOriginal scientific textWavelet bases in
Title
Wavelet bases in
Authors 1
Affiliations
- Department of Mathematics, University of Helsinki, P.O. Box 4, Regeringsgatan 15, 00014 University of Helsinki, Finland
Abstract
It is shown that an orthonormal wavelet basis for associated with a multiresolution is an unconditional basis for , 1 < p < ∞, provided the father wavelet is bounded and decays sufficiently rapidly at infinity.
Keywords
basis, , multiresolution, unconditional, wavelet
Bibliography
- A. Cohen, Ondelettes, analyses multirésolutions et filtres miroirs en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 439-459.
- I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996.
- I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
- C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666.
- R. C. James, Bases in Banach spaces, Amer. Math. Monthly 89 (1982), 625-640.
- P. G. Lemarié, Analyse multi-échelles et ondelettes à support compact, in: Les Ondelettes en 1989, P. G. Lemarié (ed.), Lecture Notes in Math. 1438, Springer, Berlin 1990, 26-38.
- S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of
, Trans. Amer. Math. Soc. 315 (1989), 69-87. - Y. Meyer, Ondelettes et Opérateurs I, Hermann, Paris 1990.
- I. Singer, Bases in Banach Spaces, Vol. I, Springer, Berlin 1970.
- E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton 1970.
- G. Strang, Wavelets and dilation equations: a brief introduction, SIAM Rev. 31 (1989), 614-627.
- A. Zygmund, Trigonometric Series, Vol. I, Cambridge University Press, Cambridge 1959.