ArticleOriginal scientific text

Title

Wavelet bases in Lp()

Authors 1

Affiliations

  1. Department of Mathematics, University of Helsinki, P.O. Box 4, Regeringsgatan 15, 00014 University of Helsinki, Finland

Abstract

It is shown that an orthonormal wavelet basis for L2() associated with a multiresolution is an unconditional basis for Lp(), 1 < p < ∞, provided the father wavelet is bounded and decays sufficiently rapidly at infinity.

Keywords

basis, Lp, multiresolution, unconditional, wavelet

Bibliography

  1. A. Cohen, Ondelettes, analyses multirésolutions et filtres miroirs en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 439-459.
  2. I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996.
  3. I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
  4. C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666.
  5. R. C. James, Bases in Banach spaces, Amer. Math. Monthly 89 (1982), 625-640.
  6. P. G. Lemarié, Analyse multi-échelles et ondelettes à support compact, in: Les Ondelettes en 1989, P. G. Lemarié (ed.), Lecture Notes in Math. 1438, Springer, Berlin 1990, 26-38.
  7. S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(), Trans. Amer. Math. Soc. 315 (1989), 69-87.
  8. Y. Meyer, Ondelettes et Opérateurs I, Hermann, Paris 1990.
  9. I. Singer, Bases in Banach Spaces, Vol. I, Springer, Berlin 1970.
  10. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton 1970.
  11. G. Strang, Wavelets and dilation equations: a brief introduction, SIAM Rev. 31 (1989), 614-627.
  12. A. Zygmund, Trigonometric Series, Vol. I, Cambridge University Press, Cambridge 1959.
Pages:
175-187
Main language of publication
English
Received
1992-08-31
Accepted
1998-01-18
Published
1993
Exact and natural sciences