It is shown that an orthonormal wavelet basis for $L^2(ℝ)$ associated with a multiresolution is an unconditional basis for $L^p(ℝ)$, 1 < p < ∞, provided the father wavelet is bounded and decays sufficiently rapidly at infinity.
Department of Mathematics, University of Helsinki, P.O. Box 4, Regeringsgatan 15, 00014 University of Helsinki, Finland
Bibliografia
[1] A. Cohen, Ondelettes, analyses multirésolutions et filtres miroirs en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 439-459.
[2] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996.
[3] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
[4] C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666.
[5] R. C. James, Bases in Banach spaces, Amer. Math. Monthly 89 (1982), 625-640.
[6] P. G. Lemarié, Analyse multi-échelles et ondelettes à support compact, in: Les Ondelettes en 1989, P. G. Lemarié (ed.), Lecture Notes in Math. 1438, Springer, Berlin 1990, 26-38.
[7] S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2(ℝ)$, Trans. Amer. Math. Soc. 315 (1989), 69-87.
[8] Y. Meyer, Ondelettes et Opérateurs I, Hermann, Paris 1990.
[9] I. Singer, Bases in Banach Spaces, Vol. I, Springer, Berlin 1970.
[10] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton 1970.
[11] G. Strang, Wavelets and dilation equations: a brief introduction, SIAM Rev. 31 (1989), 614-627.
[12] A. Zygmund, Trigonometric Series, Vol. I, Cambridge University Press, Cambridge 1959.