ArticleOriginal scientific text
Title
-bipartitions of minor hereditary properties
Authors 1, 2
Affiliations
- Institute of Mathematics, Technical University
- Department of Geometry and Algebra, P.J. Šafárik University
Abstract
We prove that for any two minor hereditary properties ₁ and ₂, such that ₂ covers ₁, and for any graph G ∈ ₂ there is a ₁-bipartition of G. Some remarks on minimal reducible bounds are also included.
Keywords
minor hereditary property of graphs, generalized colouring, bipartitions of graphs
Bibliography
- M. Borowiecki, I. Broere and P. Mihók, Minimal reducible bounds for planar graphs (submitted).
- M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanisin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
- M. Borowiecki and P. Mihók, Hereditary Properties of Graphs, in: Advances in Graph Theory (Vishwa Intern. Publications, 1991) 41-68.
- P. Borowiecki, P-Bipartitions of Graphs, Vishwa Intern. J. Graph Theory 2 (1993) 109-116.
- I. Broere and C.M. Mynhardt, Generalized colourings of outerplanar and planar graphs, in: Graph Theory with Applications to Algorithms and Computer Science (Willey, New York, 1985) 151-161.
- G. Chartrand and L. Lesniak, Graphs and Digraphs (Second Edition, Wadsworth & Brooks/Cole, Monterey, 1986).
- G. Dirac, A property of 4-chromatic graphs and remarks on critical graphs, J. London Math. Soc. 27 (1952) 85-92, doi: 10.1112/jlms/s1-27.1.85.
- W. Goddard, Acyclic colorings of planar graphs, Discrete Math. 91 (1991) 91-94, doi: 10.1016/0012-365X(91)90166-Y.
- T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications, New York, 1995).
- P. Mihók, On the vertex partition numbers of graphs, in: M. Fiedler, ed., Graphs and Other Combinatorial Topics, Proc. Third Czech. Symp. Graph Theory, Prague, 1982 (Teubner-Verlag, Leipzig, 1983) 183-188.
- P. Mihók, On the minimal reducible bound for outerplanar and planar graphs, Discrete Math. 150 (1996) 431-435, doi: 10.1016/0012-365X(95)00211-E.
- K.S. Poh, On the Linear Vertex-Arboricity of a Planar Graph, J. Graph Theory 14 (1990) 73-75, doi: 10.1002/jgt.3190140108.
- J. Wang, On point-linear arboricity of planar graphs, Discrete Math. 72 (1988) 381-384, doi: 10.1016/0012-365X(88)90229-4.