Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 17 | 1 | 89-93

Tytuł artykułu

𝓟-bipartitions of minor hereditary properties

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We prove that for any two minor hereditary properties 𝓟₁ and 𝓟₂, such that 𝓟₂ covers 𝓟₁, and for any graph G ∈ 𝓟₂ there is a 𝓟₁-bipartition of G. Some remarks on minimal reducible bounds are also included.

Wydawca

Rocznik

Tom

17

Numer

1

Strony

89-93

Opis fizyczny

Daty

wydano
1997
otrzymano
1997-02-25

Twórcy

  • Institute of Mathematics, Technical University, Podgórna 50, 65-246 Zielona Góra, Poland
  • Department of Geometry and Algebra, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia

Bibliografia

  • [1] M. Borowiecki, I. Broere and P. Mihók, Minimal reducible bounds for planar graphs (submitted).
  • [2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanisin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
  • [3] M. Borowiecki and P. Mihók, Hereditary Properties of Graphs, in: Advances in Graph Theory (Vishwa Intern. Publications, 1991) 41-68.
  • [4] P. Borowiecki, P-Bipartitions of Graphs, Vishwa Intern. J. Graph Theory 2 (1993) 109-116.
  • [5] I. Broere and C.M. Mynhardt, Generalized colourings of outerplanar and planar graphs, in: Graph Theory with Applications to Algorithms and Computer Science (Willey, New York, 1985) 151-161.
  • [6] G. Chartrand and L. Lesniak, Graphs and Digraphs (Second Edition, Wadsworth & Brooks/Cole, Monterey, 1986).
  • [7] G. Dirac, A property of 4-chromatic graphs and remarks on critical graphs, J. London Math. Soc. 27 (1952) 85-92, doi: 10.1112/jlms/s1-27.1.85.
  • [8] W. Goddard, Acyclic colorings of planar graphs, Discrete Math. 91 (1991) 91-94, doi: 10.1016/0012-365X(91)90166-Y.
  • [9] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications, New York, 1995).
  • [10] P. Mihók, On the vertex partition numbers of graphs, in: M. Fiedler, ed., Graphs and Other Combinatorial Topics, Proc. Third Czech. Symp. Graph Theory, Prague, 1982 (Teubner-Verlag, Leipzig, 1983) 183-188.
  • [11] P. Mihók, On the minimal reducible bound for outerplanar and planar graphs, Discrete Math. 150 (1996) 431-435, doi: 10.1016/0012-365X(95)00211-E.
  • [12] K.S. Poh, On the Linear Vertex-Arboricity of a Planar Graph, J. Graph Theory 14 (1990) 73-75, doi: 10.1002/jgt.3190140108.
  • [13] J. Wang, On point-linear arboricity of planar graphs, Discrete Math. 72 (1988) 381-384, doi: 10.1016/0012-365X(88)90229-4.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.