PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2005 | 171 | 3 | 283-293
Tytuł artykułu

Proximal normal structure and relatively nonexpansive mappings

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The notion of proximal normal structure is introduced and used to study mappings that are "relatively nonexpansive" in the sense that they are defined on the union of two subsets A and B of a Banach space X and satisfy ∥ Tx-Ty∥ ≤ ∥ x-y∥ for all x ∈ A, y ∈ B. It is shown that if A and B are weakly compact and convex, and if the pair (A,B) has proximal normal structure, then a relatively nonexpansive mapping T: A ∪ B → A ∪ B satisfying (i) T(A) ⊆ B and T(B) ⊆ A, has a proximal point in the sense that there exists x₀ ∈ A ∪ B such that ∥ x₀-Tx₀∥ = dist(A,B). If in addition the norm of X is strictly convex, and if (i) is replaced with (i)' T(A) ⊆ A and T(B) ⊆ B, then the conclusion is that there exist x₀ ∈ A and y₀ ∈ B such that x₀ and y₀ are fixed points of T and ∥ x₀ -y₀∥ = dist(A,B). Because every bounded closed convex pair in a uniformly convex Banach space has proximal normal structure, these results hold in all uniformly convex spaces. A Krasnosel'skiĭ type iteration method for approximating the fixed points of relatively nonexpansive mappings is also given, and some related Hilbert space results are discussed.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
171
Numer
3
Strony
283-293
Opis fizyczny
Daty
wydano
2005
Twórcy
  • Department of Mathematics, Indian Institute of Technology, Madras, Chennai, India
autor
  • Department of Mathematics, The University of Iowa, Iowa City, IA 52242-1419, U.S.A.
autor
  • Department of Mathematics, Indian Institute of Technology-Madras, Chennai, India
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-3-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.