EN
Let A be a multiplicative subgroup of $ℤ*_p$. Define the k-fold sumset of A to be $kA = {x_1 + ... + x_k : x_i ∈ A, 1 ≤ i ≤ k}$. We show that $6A ⊇ ℤ*_p$ for $|A| > p^{11/23+ϵ}$. In addition, we extend a result of Shkredov to show that $|2A| ≫ |A|^{8/5-ϵ}$ for $|A| ≪ p^{5/9}$.