ArticleOriginal scientific text
Title
Singular integrals with highly oscillating kernels on product spaces
Authors 1
Affiliations
- Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy
Abstract
We prove the boundedness of the oscillatory singular integrals for arbitrary real-valued functions and for rather general domains whose dependence upon x satisfies no regularity assumptions.
Bibliography
- L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1968), 135-157.
- L. K. Chen, Singular integrals with highly oscillating kernels on product domains, Colloq. Math. 64 (1993), 293-302.
- C. Fefferman, Pointwise convergence of Fourier series, Ann. of Math. 98 (1973), 551-572.
- R. A. Hunt, On the convergence of Fourier series, in: Orthogonal Expansions and their Continuous Analogues (Edwardsville, IL, 1967), Southern Illinois Univ. Press, Carbondale, IL, 1968, 235-255.
- R. A. Hunt and W. S. Young, A weighted norm inequality for Fourier series, Bull. Amer. Math. Soc. 80 (1974), 274-277.
- E. Prestini, Variants of the maximal double Hilbert transform, Trans. Amer. Math. Soc. 290 (1985), 761-771.
- E. Prestini, Singular integrals on product spaces with variable coefficients, Ark. Mat. 25 (1987), 276-287.
- E. Prestini,
boundedness of highly oscillatory integrals on product domains, Proc. Amer. Math. Soc. 104 (1988), 493-497. - E. Prestini, A contribution to the study of the partial sums operator
for double Fourier series, Ann. Mat. Pura Appl. 134 (1983), 287-300. - E. Prestini, Uniform estimates for families of singular integrals and double Fourier series, Austral. J. Math. 41 (1986), 1-12.
- E. Prestini, Singular integrals on product spaces related to Carleson operator, preprint.
- E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.