EN
We prove the $L^{2}(𝕋^{2})$ boundedness of the oscillatory singular integrals $P_{0} f(x,y)=\int_{D_{x}} {{e^{i(M_2(x)y' + M_1(x)x')}}οver{x'y'}} f(x-x',y-y')dx'dy'$ for arbitrary real-valued $L^{∞}$ functions $M_{1}(x), M_{2}(x)$ and for rather general domains $D_{x} ⊆ 𝕋^{2}$ whose dependence upon x satisfies no regularity assumptions.