ArticleOriginal scientific text

Title

Étude d'un système différentiel non linéaire régissant un phénomène gyroscopique forcé

Authors 1

Affiliations

  1. Département de Mathématiques, Université de Rouen, URA CNRS 1378, F-76821 Mont-Saint-Aignan Cedex, France

Bibliography

  1. A. Ambrosetti and V. Coti Zelati, Solutions with minimal period for Hamiltonian systems in potential well, ISAS, 1985.
  2. A. Assem, Thèse de docteur en science, Paris-Dauphine, 1987.
  3. J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
  4. A. Bahri and P. L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Ceremade, no. 9003.
  5. M. Benabas, Thèse de magister, U.S.T.H.B.-Alger, 1992.
  6. I. Ekeland, Une théorie de Morse pour les systèmes Hamiltoniens convexes, Ann. Inst. H. Poincaré 1 (1984), 19-78.
  7. I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, 1989.
  8. I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems, Invent. Math. 81 (1985), 155-188.
  9. I. Ekeland and H. Hofer, Subharmonics for convex nonautonomous Hamiltonian systems, Comm. Pure Appl. Math. 40 (1987), 1-36.
  10. I. Ekeland et R. Temam, Analyse convexe et problèmes variationnels, Dunod et Gauthier-Villars, 1972.
  11. H. Hofer, A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem, J. London Math. Soc. 31 (1985), 556-570.
  12. J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, 1989.
Pages:
41-58
Main language of publication
English
Received
1994-05-04
Accepted
1995-04-03
Published
1996
Exact and natural sciences