ArticleOriginal scientific text
Title
Étude d'un système différentiel non linéaire régissant un phénomène gyroscopique forcé
Authors 1
Affiliations
- Département de Mathématiques, Université de Rouen, URA CNRS 1378, F-76821 Mont-Saint-Aignan Cedex, France
Bibliography
- A. Ambrosetti and V. Coti Zelati, Solutions with minimal period for Hamiltonian systems in potential well, ISAS, 1985.
- A. Assem, Thèse de docteur en science, Paris-Dauphine, 1987.
- J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
- A. Bahri and P. L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Ceremade, no. 9003.
- M. Benabas, Thèse de magister, U.S.T.H.B.-Alger, 1992.
- I. Ekeland, Une théorie de Morse pour les systèmes Hamiltoniens convexes, Ann. Inst. H. Poincaré 1 (1984), 19-78.
- I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, 1989.
- I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems, Invent. Math. 81 (1985), 155-188.
- I. Ekeland and H. Hofer, Subharmonics for convex nonautonomous Hamiltonian systems, Comm. Pure Appl. Math. 40 (1987), 1-36.
- I. Ekeland et R. Temam, Analyse convexe et problèmes variationnels, Dunod et Gauthier-Villars, 1972.
- H. Hofer, A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem, J. London Math. Soc. 31 (1985), 556-570.
- J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, 1989.