Département de Mathématiques, Université de Rouen, URA CNRS 1378, F-76821 Mont-Saint-Aignan Cedex, France
Bibliografia
[1] A. Ambrosetti and V. Coti Zelati, Solutions with minimal period for Hamiltonian systems in potential well, ISAS, 1985.
[2] A. Assem, Thèse de docteur en science, Paris-Dauphine, 1987.
[3] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
[4] A. Bahri and P. L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Ceremade, no. 9003.
[5] M. Benabas, Thèse de magister, U.S.T.H.B.-Alger, 1992.
[6] I. Ekeland, Une théorie de Morse pour les systèmes Hamiltoniens convexes, Ann. Inst. H. Poincaré 1 (1984), 19-78.
[7] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, 1989.
[8] I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems, Invent. Math. 81 (1985), 155-188.
[9] I. Ekeland and H. Hofer, Subharmonics for convex nonautonomous Hamiltonian systems, Comm. Pure Appl. Math. 40 (1987), 1-36.
[10] I. Ekeland et R. Temam, Analyse convexe et problèmes variationnels, Dunod et Gauthier-Villars, 1972.
[11] H. Hofer, A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem, J. London Math. Soc. 31 (1985), 556-570.
[12] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, 1989.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv70i1p41bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.