ArticleOriginal scientific text
Title
Proper intersection multiplicity and regular separation of analytic sets
Authors 1, 1
Affiliations
- Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
Abstract
We consider complex analytic sets with proper intersection. We find their regular separation exponent using basic notions of intersection multiplicity theory.
Keywords
proper intersection, multiplicity, exponent of regular separation
Bibliography
- R. Achilles, P. Tworzewski and T. Winiarski, On improper isolated intersection in complex analytic geometry, Ann. Polon. Math. 51 (1990), 21-36.
- R. Draper, Intersection theory in analytic geometry, Math. Ann. 180 (1969), 175-204.
- S. Łojasiewicz, Ensembles semi-analytiques, I.H.E.S. Bures-sur-Yvette, 1965.
- S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991.
- S. Łojasiewicz, Sur la séparation régulière, Univ. Studi Bologna, Sem. Geom. 1985, 119-121.
- A. Płoski, Multiplicity and the Łojasiewicz exponent, Polish Academy of Sciences, Warsaw, preprint 359.
- A. Płoski, Une évaluation pour les sous-ensembles analytiques complexes, Bull. Polish Acad. Sci. Math. 31 (1983), 259-262.
- P. Tworzewski, Isolated intersection multiplicity and regular separation of analytic sets, Ann. Polon. Math. 58 (1993), 213-219.
- P. Tworzewski and T. Winiarski, Analytic sets with proper projections, J. Reine Angew. Math. 337 (1982), 68-76.
- P. Tworzewski and T. Winiarski, Cycles of zeroes of holomorphic mappings, Bull. Polish Acad. Sci. Math. 37 (1989), 95-101.
- T. Winiarski, Continuity of total number of intersection, Ann. Polon. Math. 47 (1986), 155-178.