ArticleOriginal scientific text

Title

Proper intersection multiplicity and regular separation of analytic sets

Authors 1, 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

We consider complex analytic sets with proper intersection. We find their regular separation exponent using basic notions of intersection multiplicity theory.

Keywords

proper intersection, multiplicity, exponent of regular separation

Bibliography

  1. R. Achilles, P. Tworzewski and T. Winiarski, On improper isolated intersection in complex analytic geometry, Ann. Polon. Math. 51 (1990), 21-36.
  2. R. Draper, Intersection theory in analytic geometry, Math. Ann. 180 (1969), 175-204.
  3. S. Łojasiewicz, Ensembles semi-analytiques, I.H.E.S. Bures-sur-Yvette, 1965.
  4. S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991.
  5. S. Łojasiewicz, Sur la séparation régulière, Univ. Studi Bologna, Sem. Geom. 1985, 119-121.
  6. A. Płoski, Multiplicity and the Łojasiewicz exponent, Polish Academy of Sciences, Warsaw, preprint 359.
  7. A. Płoski, Une évaluation pour les sous-ensembles analytiques complexes, Bull. Polish Acad. Sci. Math. 31 (1983), 259-262.
  8. P. Tworzewski, Isolated intersection multiplicity and regular separation of analytic sets, Ann. Polon. Math. 58 (1993), 213-219.
  9. P. Tworzewski and T. Winiarski, Analytic sets with proper projections, J. Reine Angew. Math. 337 (1982), 68-76.
  10. P. Tworzewski and T. Winiarski, Cycles of zeroes of holomorphic mappings, Bull. Polish Acad. Sci. Math. 37 (1989), 95-101.
  11. T. Winiarski, Continuity of total number of intersection, Ann. Polon. Math. 47 (1986), 155-178.
Pages:
293-298
Main language of publication
English
Received
1993-11-10
Published
1994
Exact and natural sciences