ArticleOriginal scientific text

Title

On sums of two kth powers: an asymptotic formula for the mean square of the error term

Authors 1

Affiliations

  1. Institut für Mathematik, Universität für Bodenkultur, A-1180 Wien, Austria

Bibliography

  1. A. S. Besicovitch, On the linear independence of fractional powers of integers, J. London Math. Soc. 15 (1940), 3-6.
  2. K. Corrádi and I. Kátai, A note on K. S. Gangadharan's paper 'Two classical lattice point problems' Magyar Tud. Akad. Mat. Fiz. Tud. Oszt. Kötzl. 17 (1967), 89-97 (in Hungarian).
  3. K. S. Gangadharan, Two classical lattice point problems, Proc. Cambridge Philos. Soc. 57 (1961), 699-721.
  4. S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge Univ. Press, Cambridge, 1991.
  5. J. L. Hafner, New omega theorems for two classical lattice point problems, Invent. Math. 63 (1981), 181-186.
  6. G. H. Hardy, On the expression of a number as the sum of two squares, Quart. J. Math. 46 (1915), 263-283.
  7. M. N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301.
  8. M. N. Huxley, Area, Lattice Points, and Exponential Sums, London Math. Soc. Monographs (N.S.) 13, Oxford, 1996.
  9. I. Kátai, The number of lattice points in a circle, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 8 (1965), 39-60.
  10. E. Krätzel, Lattice Points, Deutsch. Verlag Wiss., Berlin, 1988.
  11. E. Krätzel, Bemerkungen zu einem Gitterpunktproblem, Math. Ann. 179 (1969), 90-96.
  12. G. Kuba, On sums of two k-th powers of numbers in residue classes II, Abh. Math. Sem. Univ. Hamburg 63 (1993), 87-95.
  13. M. Kühleitner, W. G. Nowak, J. Schoissengeier and T. Wooley, On sums of two cubes: an Ω₊-estimate for the error term, Acta Arith. 85 (1998), 179-195.
  14. W. G. Nowak, On sums of two k-th powers: a mean-square bound for the error term, Analysis 16 (1996), 297-304.
  15. W. G. Nowak, Sums of two k-th powers: an Omega estimate for the error term, Arch. Math. (Basel) 68 (1997), 27-35.
  16. D. Redmond, Mean value theorems for a class of Dirichlet series, Pacific J. Math. 78 (1978), 191-231.
  17. L. Schnabel, Über eine Verallgemeinerung des Kreisproblems, Wiss. Z. Friedrich-Schiller-Univ. Jena Math.-Natur. Reihe 31 (1982), 667-781.
  18. J. D. Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985), 183-216.
  19. J. G. van der Corput, Over roosterpunkten in het plate vlak, thesis, Groningen, 1919.
Pages:
263-276
Main language of publication
English
Received
1999-05-11
Published
2000
Exact and natural sciences