Institut für Mathematik, Universität für Bodenkultur, A-1180 Wien, Austria
Bibliografia
[1] A. S. Besicovitch, On the linear independence of fractional powers of integers, J. London Math. Soc. 15 (1940), 3-6.
[2] K. Corrádi and I. Kátai, A note on K. S. Gangadharan's paper 'Two classical lattice point problems' Magyar Tud. Akad. Mat. Fiz. Tud. Oszt. Kötzl. 17 (1967), 89-97 (in Hungarian).
[3] K. S. Gangadharan, Two classical lattice point problems, Proc. Cambridge Philos. Soc. 57 (1961), 699-721.
[4] S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge Univ. Press, Cambridge, 1991.
[5] J. L. Hafner, New omega theorems for two classical lattice point problems, Invent. Math. 63 (1981), 181-186.
[6] G. H. Hardy, On the expression of a number as the sum of two squares, Quart. J. Math. 46 (1915), 263-283.
[7] M. N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301.
[8] M. N. Huxley, Area, Lattice Points, and Exponential Sums, London Math. Soc. Monographs (N.S.) 13, Oxford, 1996.
[9] I. Kátai, The number of lattice points in a circle, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 8 (1965), 39-60.
[10] E. Krätzel, Lattice Points, Deutsch. Verlag Wiss., Berlin, 1988.
[11] E. Krätzel, Bemerkungen zu einem Gitterpunktproblem, Math. Ann. 179 (1969), 90-96.
[12] G. Kuba, On sums of two k-th powers of numbers in residue classes II, Abh. Math. Sem. Univ. Hamburg 63 (1993), 87-95.
[13] M. Kühleitner, W. G. Nowak, J. Schoissengeier and T. Wooley, On sums of two cubes: an Ω₊-estimate for the error term, Acta Arith. 85 (1998), 179-195.
[14] W. G. Nowak, On sums of two k-th powers: a mean-square bound for the error term, Analysis 16 (1996), 297-304.
[15] W. G. Nowak, Sums of two k-th powers: an Omega estimate for the error term, Arch. Math. (Basel) 68 (1997), 27-35.
[16] D. Redmond, Mean value theorems for a class of Dirichlet series, Pacific J. Math. 78 (1978), 191-231.
[17] L. Schnabel, Über eine Verallgemeinerung des Kreisproblems, Wiss. Z. Friedrich-Schiller-Univ. Jena Math.-Natur. Reihe 31 (1982), 667-781.
[18] J. D. Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985), 183-216.
[19] J. G. van der Corput, Over roosterpunkten in het plate vlak, thesis, Groningen, 1919.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav92i3p263bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.