Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Graph
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

The hat problem on a union of disjoint graphs

100%
EN
The topic is the hat problem in which each of n players is randomly fitted with a blue or red hat. Then everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The aim is to maximize the probability of winning. In this version every player can see everybody excluding himself. We consider such a problem on a graph, where vertices correspond to players, and a player can see each player to whom he is connected by an edge. The solution of the hat problem is known for cycles and bipartite graphs. We investigate the problem on a union of disjoint graphs.
2
Content available remote

Bounds on global secure sets in cactus trees

88%
EN
Let G = (V, E) be a graph. A global secure set SD ⊆ V is a dominating set which satisfies the condition: for all X ⊆ SD, |N[X] ∩ SD| ≥ | N[X] − SD|. A global defensive alliance is a set of vertices A that is dominating and satisfies a weakened condition: for all x ∈ A, |N[x] ∩ A| ≥ |N[x] − A|. We give an upper bound on the cardinality of minimum global secure sets in cactus trees. We also present some results for trees, and we relate them to the known bounds on the minimum cardinality of global defensive alliances.
3
Content available remote

A lower bound for the packing chromatic number of the Cartesian product of cycles

75%
EN
Let G = (V, E) be a simple graph of order n and i be an integer with i ≥ 1. The set X i ⊆ V(G) is called an i-packing if each two distinct vertices in X i are more than i apart. A packing colouring of G is a partition X = {X 1, X 2, …, X k} of V(G) such that each colour class X i is an i-packing. The minimum order k of a packing colouring is called the packing chromatic number of G, denoted by χρ(G). In this paper we show, using a theoretical proof, that if q = 4t, for some integer t ≥ 3, then 9 ≤ χρ(C 4 □ C q). We will also show that if t is a multiple of four, then χρ(C 4 □ C q) = 9.
EN
We take as given a real symmetric matrix A, whose graph is a tree T, and the eigenvalues of A, with their multiplicities. Each edge of T may then be classified in one of four categories, based upon the change in multiplicity of a particular eigenvalue, when the edge is removed (i.e. the corresponding entry of A is replaced by 0).We show a necessary and suficient condition for each possible classification of an edge. A special relationship is observed among 2-Parter edges, Parter edges and singly Parter vertices. Then, we investigate the change in multiplicity of an eigenvalue based upon a change in an edge value. We show how the multiplicity of the eigenvalue changes depending upon the status of the edge and the edge value. This work explains why, in some cases, edge values have no effect on multiplicities. We also characterize, more precisely, how multiplicity changes with the removal of two adjacent vertices.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.