We consider a conservative second order Hamiltonian system $$\ddot q + \nabla V(q) = 0$$ in ℝ3 with a potential V having a global maximum at the origin and a line l ∩ {0} = ϑ as a set of singular points. Under a certain compactness condition on V at infinity and a strong force condition at singular points we study, by the use of variational methods and geometrical arguments, the existence of homoclinic solutions of the system.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We consider a planar autonomous Hamiltonian system :q+∇V(q) = 0, where the potential V: ℝ2 \{ζ}→ ℝ has a single well of infinite depth at some point ζ and a strict global maximum 0at two distinct points a and b. Under a strong force condition around the singularity ζ we will prove a lemma on the existence and multiplicity of heteroclinic and homoclinic orbits - the shadowing chain lemma - via minimization of action integrals and using simple geometrical arguments.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.