Exact conditions for α, β, a, b > −1 and 1 ≤ p ≤ ∞ are determined under which the inclusion property $$L_{w^{(a,b)} }^p [ - 1,1]$$ ⊂ $$L_{w^{(\alpha ,\beta )} }^1 [ - 1,1]$$ is valid. It is shown that the conditions characterize the inclusion property. The paper concludes with some results, in which the inclusion property can be detected in relation with estimates of Jacobi differential operators and with Muckenhoupt’s transplantation theorems and multiplier theorems for Jacobi series.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.