Strong asymptotic completeness is shown for a pair of Schrödinger type operators on a cylindrical Lipschitz domain. A key ingredient is a limiting absorption principle valid in a scale of weighted (local) Sobolev spaces with respect to the uniform topology. The results are based on a refined version of Mourre’s method within the context of pseudo-selfadjoint operators.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.