Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  complete multipartite graphs
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A graph G is said to be chromatic-choosable if ch(G) = χ(G). Ohba has conjectured that every graph G with 2χ(G)+1 or fewer vertices is chromatic-choosable. It is clear that Ohba's conjecture is true if and only if it is true for complete multipartite graphs. In this paper we show that Ohba's conjecture is true for complete multipartite graphs $K_{4,3*t,2*(k-2t-2),1*(t+1)}$ for all integers t ≥ 1 and k ≥ 2t+2, that is, $ch(K_{4,3*t,2*(k-2t-2),1*(t+1)}) = k$, which extends the results $ch(K_{4,3,2*(k-4),1*2}) = k$ given by Shen et al. (Discrete Math. 308 (2008) 136-143), and $ch(K_{4,3*2,2*(k-6),1*3}) = k$ given by He et al. (Discrete Math. 308 (2008) 5871-5877).
2
Content available remote

On Incidence Coloring of Complete Multipartite and Semicubic Bipartite Graphs

75%
EN
In the paper, we show that the incidence chromatic number χi of a complete k-partite graph is at most Δ + 2 (i.e., proving the incidence coloring conjecture for these graphs) and it is equal to Δ + 1 if and only if the smallest part has only one vertex (i.e., Δ = n − 1). Formally, for a complete k-partite graph G = Kr1,r2,...,rk with the size of the smallest part equal to r1 ≥ 1 we have χi(G)={Δ(G)+1if r1=1,Δ(G)+2if r1>1. $$\chi _i (G) = \left\{ {\matrix{{\Delta (G) + 1} & {{\rm{if}}\;r_1 = 1,} \cr {\Delta (G) + 2} & {{\rm{if}}\;r_1 > 1.} \cr } } \right.$$ In the paper we prove that the incidence 4-coloring problem for semicubic bipartite graphs is 𝒩𝒫-complete, thus we prove also the 𝒩𝒫-completeness of L(1, 1)-labeling problem for semicubic bipartite graphs. Moreover, we observe that the incidence 4-coloring problem is 𝒩𝒫-complete for cubic graphs, which was proved in the paper [12] (in terms of generalized dominating sets).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.