Let A and B be uniform algebras. Suppose that α ≠ 0 and A 1 ⊂ A. Let ρ, τ: A 1 → A and S, T: A 1 → B be mappings. Suppose that ρ(A 1), τ(A 1) and S(A 1), T(A 1) are closed under multiplications and contain expA and expB, respectively. If ‖S(f)T(g) − α‖∞ = ‖ρ(f)τ(g) − α‖∞ for all f, g ∈ A 1, S(e 1)−1 ∈ S(A 1) and S(e 1) ∈ T(A 1) for some e 1 ∈ A 1 with ρ(e 1) = 1, then there exists a real-algebra isomorphism $$ \tilde S $$: A → B such that $$ \tilde S $$(ρ(f)) = S(e 1)−1 S(f) for every f ∈ A 1. We also give some applications of this result.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper we first consider a real-linear isometry T from a certain subspace A of C(X) (endowed with supremum norm) into C(Y) where X and Y are compact Hausdorff spaces and give a result concerning the description of T whenever A is a uniform algebra on X. The result is improved for the case where T(A) is, in addition, a complex subspace of C(Y). We also give a similar description for the case where A is a function space on X and the range of T is a real subspace of C(Y) satisfying a ceratin separating property. Next similar results are obtained for real-linear isometries between spaces of Lipschitz functions on compact metric spaces endowed with a certain complete norm.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let A and B be uniformly closed function algebras on locally compact Hausdorff spaces with Choquet boundaries Ch A and ChB, respectively. We prove that if T: A → B is a surjective real-linear isometry, then there exist a continuous function κ: ChB → {z ∈ ℂ: |z| = 1}, a (possibly empty) closed and open subset K of ChB and a homeomorphism φ: ChB → ChA such that T(f) = κ(f ∘φ) on K and $T\left( f \right) = \kappa \overline {fo\phi }$ on ChB \ K for all f ∈ A. Such a representation holds for surjective real-linear isometries between (not necessarily uniformly closed) function algebras.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let A and B be unital, semisimple commutative Banach algebras with the maximal ideal spaces M A and M B, respectively, and let r(a) be the spectral radius of a. We show that if T: A → B is a surjective mapping, not assumed to be linear, satisfying r(T(a) + T(b)) = r(a + b) for all a; b ∈ A, then there exist a homeomorphism φ: M B → M A and a closed and open subset K of M B such that $$ \widehat{T\left( a \right)}\left( y \right) = \left\{ \begin{gathered} \widehat{T\left( e \right)}\left( y \right)\hat a\left( {\phi \left( y \right)} \right) y \in K \hfill \\ \widehat{T\left( e \right)}\left( y \right)\overline {\hat a\left( {\phi \left( y \right)} \right)} y \in M_\mathcal{B} \backslash K \hfill \\ \end{gathered} \right. $$ for all a ∈ A, where e is unit element of A. If, in addition, $$ \widehat{T\left( e \right)} = 1 $$ and $$ \widehat{T\left( {ie} \right)} = i $$ on M B, then T is an algebra isomorphism.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.