This paper is devoted to Hermite interpolation with Chebyshev-Lobatto and Chebyshev-Radau nodal points. The aim of this piece of work is to establish the rate of convergence for some types of smooth functions. Although the rate of convergence is similar to that of Lagrange interpolation, taking into account the asymptotic constants that we obtain, the use of this method is justified and it is very suitable when we dispose of the appropriate information.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The pointwise approximation properties of the Bézier variant of the MKZ-Kantorovich operators $$ \hat M_{n,\alpha } (f,x) $$ for α ≥ 1 have been studied in [Comput. Math. Appl., 39 (2000), 1-13]. The aim of this paper is to deal with the pointwise approximation of the operators $$ \hat M_{n,\alpha } (f,x) $$ for the other case 0 < α < 1. By means of some new techniques and new inequalities we establish an estimate formula on the rate of convergence of the operators $$ \hat M_{n,\alpha } (f,x) $$ for the case 0 < α < 1. In the end we propose the q-analogue of MKZK operators.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
An asymptotic approximation of Wallis’ sequence W(n) = Πk=1n 4k 2/(4k 2 − 1) obtained on the base of Stirling’s factorial formula is presented. As a consequence, several accurate new estimates of Wallis’ ratios w(n) = Πk=1n(2k−1)/(2k) are given. Also, an asymptotic approximation of π in terms of Wallis’ sequence W(n) is obtained, together with several double inequalities such as, for example, $W(n) \cdot (a_n + b_n ) < \pi < W(n) \cdot (a_n + b'_n )$ with $a_n = 2 + \frac{1} {{2n + 1}} + \frac{2} {{3(2n + 1)^2 }} - \frac{1} {{3n(2n + 1)'}}b_n = \frac{2} {{33(n + 1)^{2'} }}b'_n \frac{1} {{13n^{2'} }}n \in \mathbb{N} $ .
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.