We answer two open questions concerning the recently introduced notions of slicely countably determined (SCD) sets and SCD operators in Banach spaces. An application to narrow operators in spaces with the Daugavet property is given.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let Y be a Banach space, (Ω, Σ; μ) a probability space and φ a finite Young function. It is shown that the Y-valued Orlicz heart H φ(μ, Y) is isometrically isomorphic to the l-completed tensor product $$ H_\varphi \left( \mu \right)\tilde \otimes _l Y $$ of the scalar-valued Orlicz heart Hφ(μ) and Y, in the sense of Chaney and Schaefer. As an application, a characterization is given of the equality of $$ \left( {H_\varphi \left( \mu \right)\tilde \otimes _l Y} \right)* $$ and $$ H_\varphi \left( \mu \right)*\tilde \otimes _l Y* $$ in terms of the Radon-Nikodým property on Y. Convergence of norm-bounded martingales in H φ(μ, Y) is characterized in terms of the Radon-Nikodým property on Y. Using the associativity of the l-norm, an alternative proof is given of the known fact that for any separable Banach lattice E and any Banach space Y, E and Y have the Radon-Nikodým property if and only if $$ E\tilde \otimes _l Y $$ has the Radon-Nikodým property. As a corollary, the Radon-Nikodým property in H φ(μ, Y) is described in terms of the Radon-Nikodým property on H φ(μ) and Y.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.