Let A and B be Banach function algebras on compact Hausdorff spaces X and Y and let ‖.‖X and ‖.‖Y denote the supremum norms on X and Y, respectively. We first establish a result concerning a surjective map T between particular subsets of the uniform closures of A and B, preserving multiplicatively the norm, i.e. ‖Tf Tg‖Y = ‖fg‖X, for certain elements f and g in the domain. Then we show that if α ∈ ℂ {0} and T: A → B is a surjective, not necessarily linear, map satisfying ‖fg + α‖X = ‖Tf Tg + α‖Y, f,g ∈ A, then T is injective and there exist a homeomorphism φ: c(B) → c(A) between the Choquet boundaries of B and A, an invertible element η ∈ B with η(Y) ⊆ {1, −1} and a clopen subset K of c(B) such that for each f ∈ A, $$ Tf\left( y \right) = \left\{ \begin{gathered} \eta \left( y \right)f\left( {\phi \left( y \right)} \right) y \in K, \hfill \\ - \frac{\alpha } {{\left| \alpha \right|}}\eta \left( y \right)\overline {f\left( {\phi \left( y \right)} \right)} y \in c\left( B \right)\backslash K \hfill \\ \end{gathered} \right. $$. In particular, if T satisfies the stronger condition R π(fg + α) = R π(Tf Tg + α), where R π(.) denotes the peripheral range of algebra elements, then Tf(y) = T1(y)f(φ(y)), y ∈ c(B), for some homeomorphism φ: c(B) → c(A). At the end of the paper, we consider the case where X and Y are locally compact Hausdorff spaces and show that if A and B are Banach function algebras on X and Y, respectively, then every surjective map T: A → B satisfying ‖Tf Tg‖Y = ‖fg‖, f, g ∈ A, induces a homeomorphism between quotient spaces of particular subsets of X and Y by some equivalence relations.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.