Let $M_{g}^{+}$ be the maximal operator defined by $M_{g}^{+}⨍(x) = sup_{h>0} (ʃ_{x}^{x+h} |⨍|g)/(ʃ_{x}^{x+h} g)$, where g is a positive locally integrable function on ℝ. Let Φ be an N-function such that both Φ and its complementary N-function satisfy $Δ_2$. We characterize the pairs of positive functions (u,ω) such that the weak type inequality $u({x ∈ ℝ | M_{g}^{+}⨍(x) > λ}) ≤ C/(Φ(λ)) ʃ_ℝ Φ(|⨍|)ω$ holds for every ⨍ in the Orlicz space $L_Φ(ω)$. We also characterize the positive functions ω such that the integral inequality $ʃ_ℝ Φ(|M_{g}^{+}⨍|)ω ≤ ʃ_ℝ Φ(|⨍|)ω$ holds for every $⨍ ∈ L_Φ(ω)$. Our results include some already obtained for functions in $L^p$ and yield as consequences one-dimensional theorems due to Gallardo and Kerman-Torchinsky.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In connection with the $A_ϕ $ classes of weights (see [K-T] and [B-K]), we study, in the context of Orlicz spaces, the corresponding reverse-Hölder classes $RH_ϕ$. We prove that when ϕ is $Δ_2$ and has lower index greater than one, the class $RH_ϕ$ coincides with some reverse-Hölder class $RH_q,q>1$. For more general ϕ we still get $RH_ϕ ⊂ A_∞ = ⋃_{q>1}RH_q$ although the intersection of all these $RH_ϕ$ gives a proper subset of $⋂_{q>1}RH_q$.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We extend a theorem of Kato on similarity for sequences of projections in Hilbert spaces to the case of isomorphic Schauder decompositions in certain Banach spaces. To this end we use ℓψ-Hilbertian and ∞-Hilbertian Schauder decompositions instead of orthogonal Schauder decompositions, generalize the concept of an orthogonal Schauder decomposition to the case of Banach spaces and introduce the class of Banach spaces with Schauder-Orlicz decompositions. Furthermore, we generalize the notions of type, cotype, infratype and M-cotype of a Banach space and study the properties of unconditional Schauder decompositions in Banach spaces possessing certain geometric structure.
We study the topological properties of the space \(\mathcal{L}(L^\varphi, X)\) of all continuous linear operators from an Orlicz space \(L^\varphi\) (an Orlicz function \(\varphi\) is not necessarily convex) to a Banach space \(X\). We provide the space \(\mathcal{L}(L^\varphi ,X)\) with the Banach space structure. Moreover, we examine the space \(\mathcal{L}_s (L^\varphi, X)\) of all singular operators from \(L^\varphi\) to \(X\).
We examine the topological properties of Orlicz-Bochner spaces \(L^\varphi(X)\) (over a σ-finite measure space \((\Omega, \Sigma, \mu))\), where \(\varphi\) is an Orlicz function (not necessarily convex) and \(X\) is a real Banach space. We continue the study of some class of locally convex topologies on \(L^\varphi (X)\), called uniformly \(\mu\)-continuous topologies. In particular, the generalized mixed topology \(\mathcal{T}_I^\varphi (X)\) on \(L^\varphi (X)\) (in the sense of Turpin) is considered.
8
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let Ω ⊂ ℝn, n ≥ 2, be a bounded domain and let α < n − 1. Motivated by Theorem I.6 and Remark I.18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201] and by the results of [Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate of the exponent concerning the Concentration-Compactness Principle for the embedding of the Orlicz-Sobolev space W 01 L n logα L(Ω) into the Orlicz space corresponding to a Young function that behaves like exp t n/(n−1−α) for large t. We also give the result for the case of the embedding into double and other multiple exponential spaces.
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper is a continuation of [5] and provides necessary and sufficient conditions for double exponential integrability of the Bessel potential of functions from suitable (generalized) Lorentz-Zygmund spaces. These results are used to establish embedding theorems for Bessel potential spaces which extend Trudinger's result.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.