It is known that if a rearrangement invariant (r.i.) space E on [0, 1] has an unconditional basis then every linear bounded operator on E is a sum of two narrow operators. On the other hand, for the classical space E = L 1[0, 1] having no unconditional basis the sum of two narrow operators is a narrow operator. We show that a Köthe space on [0, 1] having “lots” of nonnarrow operators that are sum of two narrow operators need not have an unconditional basis. However, we do not know if such an r.i. space exists. Another result establishes sufficient conditions on an r.i. space E under which the orthogonal projection onto the closed linear span of the Rademacher system is a hereditarily narrow operator. This, in particular, answers a question of the first named author and Randrianantoanina (Problem 11.9 in [Popov M., Randrianantoanina B., Narrow Operators on Function Spaces and Vector Lattices, de Gruyter Stud. Math., 45, Walter de Gruyter, Berlin, 2013]).
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
It is known that there is a continuous linear functional on L ∞ which is not narrow. On the other hand, every order-to-norm continuous AM-compact operator from L ∞(μ) to a Banach space is narrow. We study order-to-norm continuous operators acting from L ∞(μ) with a finite atomless measure μ to a Banach space. One of our main results asserts that every order-to-norm continuous operator from L ∞(μ) to c 0(Γ) is narrow while not every such an operator is AM-compact.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let X and Y be Banach spaces. An operator G: X → Y is a Daugavet center if ‖G +T‖ = ‖G‖+‖T‖ for every rank-1 operator T. For every Daugavet center G we consider a certain set of operators acting from X, so-called G-narrow operators. We prove that if J is the natural embedding of Y into a Banach space E, then E can be equivalently renormed so that an operator T is (J ○ G)-narrow if and only if T is G-narrow. We study G-rich subspaces of X: Z ⊂ X is called G-rich if the quotient map q: X → X/Z is G-narrow.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We prove that if Köthe F-spaces X and Y on finite atomless measure spaces (ΩX; ΣX, µX) and (ΩY; ΣY; µY), respectively, with absolute continuous norms are isomorphic and have the property $\mathop {\lim }\limits_{\mu (A) \to 0} \left\| {\mu (A)^{ - 1} 1_A } \right\| = 0$ (for µ = µX and µ = µY, respectively) then the measure spaces (ΩX; ΣX; µX) and (ΩY; ΣY; µY) are isomorphic, up to some positive multiples. This theorem extends a result of A. Plichko and M. Popov concerning isomorphic classification of L p(µ)-spaces for 0 < p < 1. We also provide a new class of F-spaces having no nonzero separable quotient space.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.