Assume that L p,q, $L^{p_1 ,q_1 } ,...,L^{p_n ,q_n } $ are Lorentz spaces. This article studies the question: what is the size of the set $E = \{ (f_1 ,...,f_n ) \in L^{p_{1,} q_1 } \times \cdots \times L^{p_n ,q_n } :f_1 \cdots f_n \in L^{p,q} \} $. We prove the following dichotomy: either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is σ-porous in $L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $, provided 1/p ≠ 1/p 1 + … + 1/p n. In general case we obtain that either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is meager. This is a generalization of the results for classical L p spaces.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In calculus, an indefinite integral of a function f is a differentiable function F whose derivative is equal to f. The main goal of the paper is to generalize this notion of the indefinite integral from the ring of real functions to any ring. We also investigate basic properties of such generalized integrals and compare them to the well-known properties of indefinite integrals of real functions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.