We establish a decomposability criterion for linear sheaves on ℙn. Applying it to instanton bundles, we show, in particular, that every rank 2n instanton bundle of charge 1 on ℙn is decomposable. Moreover, we provide an example of an indecomposable instanton bundle of rank 2n − 1 and charge 1, thus showing that our criterion is sharp.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A hypercomplex manifold is a manifold equipped with three complex structures I, J, K satisfying the quaternionic relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercomplex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian manifolds equipped with a pair of strong HKT-structures that have opposite torsion. In the language of Hitchin’s and Gualtieri’s generalized complex geometry, (4,4)-manifolds are called “generalized hyperkähler manifolds”. We show that the moduli space of anti-self-dual connections on M is a (4,4)-manifold if M is equipped with a (4,4)-structure.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.