Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Cohomological dimension
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

On the dimension of the space of ℝ-places of certain rational function fields

100%
EN
We prove that for every n ∈ ℕ the space M(K(x 1, …, x n) of ℝ-places of the field K(x 1, …, x n) of rational functions of n variables with coefficients in a totally Archimedean field K has the topological covering dimension dimM(K(x 1, …, x n)) ≤ n. For n = 2 the space M(K(x 1, x 2)) has covering and integral dimensions dimM(K(x 1, x 2)) = dimℤ M(K(x 1, x 2)) = 2 and the cohomological dimension dimG M(K(x 1, x 2)) = 1 for any Abelian 2-divisible coefficient group G.
2
Content available remote

Seshadri positive submanifolds of polarized manifolds

86%
EN
Let Y be a submanifold of dimension y of a polarized complex manifold (X, A) of dimension k ≥ 2, with 1 ≤ y ≤ k−1. We define and study two positivity conditions on Y in (X, A), called Seshadri A-bigness and (a stronger one) Seshadri A-ampleness. In this way we get a natural generalization of the theory initiated by Paoletti in [Paoletti R., Seshadri positive curves in a smooth projective 3-fold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1996, 6(4), 259–274] (which corresponds to the case (k, y) = (3, 1)) and subsequently generalized and completed in [Bădescu L., Beltrametti M.C., Francia P., Positive curves in polarized manifolds, Manuscripta Math, 1997, 92(3), 369–388] (regarding curves in a polarized manifold of arbitrary dimension). The theory presented here, which is new even if y = k − 1, is motivated by a reasonably large area of examples.
3
Content available remote

Left-right noncommutative Poisson algebras

58%
EN
The notions of left-right noncommutative Poisson algebra (NPlr-algebra) and left-right algebra with bracket AWBlr are introduced. These algebras are special cases of NLP-algebras and algebras with bracket AWB, respectively, studied earlier. An NPlr-algebra is a noncommutative analogue of the classical Poisson algebra. Properties of these new algebras are studied. In the categories AWBlr and NPlr-algebras the notions of actions, representations, centers, actors and crossed modules are described as special cases of the corresponding wellknown notions in categories of groups with operations. The cohomologies of NPlr-algebras and AWBlr (resp. of NPr-algebras and AWBr) are defined and the relations between them and the Hochschild, Quillen and Leibniz cohomologies are detected. The cases P is a free AWBr, the Hochschild or/and Leibniz cohomological dimension of P is ≤ n are considered separately, exhibiting interesting possibilities of representations of the new cohomologies by the well-known ones and relations between the corresponding cohomological dimensions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.