We deal with rectangular m×n boards of square cells, using the cut technics of the height function. We investigate combinatorial properties of this function, and in particular we give lower and upper bounds for the number of essentially different cuts. This number turns out to be the cardinality of the height function’s range, in case the height function has maximally many rectangular islands.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A graph G is H-saturated if H is not a subgraph of G but the addition of any edge from G̅ to G results in a copy of H. The minimum size of an H-saturated graph on n vertices is denoted sat(n,H), while the maximum size is the well studied extremal number, ex(n,H). The saturation spectrum for a graph H is the set of sizes of H saturated graphs between sat(n,H) and ex(n,H). In this paper we completely determine the saturation spectrum of stars and we show the saturation spectrum of paths is continuous from sat(n, Pk) to within a constant of ex(n, Pk) when n is sufficiently large.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A tree containing exactly two non-pendant vertices is called a double-star. A double-star with degree sequence (k1 + 1, k2 + 1, 1, . . . , 1) is denoted by Sk1,k2. We study the edge-decomposition of graphs into double-stars. It was proved that every double-star of size k decomposes every 2k-regular graph. In this paper, we extend this result by showing that every graph in which every vertex has degree 2k + 1 or 2k + 2 and containing a 2-factor is decomposed into Sk1,k2 and Sk1−1,k2, for all positive integers k1 and k2 such that k1 + k2 = k.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let G = (V, E) be a graph. A global secure set SD ⊆ V is a dominating set which satisfies the condition: for all X ⊆ SD, |N[X] ∩ SD| ≥ | N[X] − SD|. A global defensive alliance is a set of vertices A that is dominating and satisfies a weakened condition: for all x ∈ A, |N[x] ∩ A| ≥ |N[x] − A|. We give an upper bound on the cardinality of minimum global secure sets in cactus trees. We also present some results for trees, and we relate them to the known bounds on the minimum cardinality of global defensive alliances.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The aim of this paper is to characterize the patterns of successive distances of leaves in plane trivalent trees, and give a very short characterization of their parity pattern. Besides, we count how many trees satisfy some given sequences of patterns.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this note we consider a discrete symmetric function f(x, y) where $$f(x,a) + f(y,b) \geqslant f(y,a) + f(x,b) for any x \geqslant y and a \geqslant b,$$ associated with the degrees of adjacent vertices in a tree. The extremal trees with respect to the corresponding graph invariant, defined as $$\sum\limits_{uv \in E(T)} {f(deg(u),deg(v))} ,$$ are characterized by the “greedy tree” and “alternating greedy tree”. This is achieved through simple generalizations of previously used ideas on similar questions. As special cases, the already known extremal structures of the Randic index follow as corollaries. The extremal structures for the relatively new sum-connectivity index and harmonic index also follow immediately, some of these extremal structures have not been identified in previous studies.
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We supply a combinatorial description of any minor of the adjacency matrix of a graph. This description is then used to give a formula for the determinant and inverse of the adjacency matrix, A(G), of a graph G, whenever A(G) is invertible, where G is formed by replacing the edges of a tree by path bundles.
8
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We exhibit a monoidal structure on the category of finite sets indexed by P-trees for a finitary polynomial endofunctor P. This structure categorifies the monoid scheme (over Spec ℕ) whose semiring of functions is (a P-version of) the Connes-Kreimer bialgebra H of rooted trees (a Hopf algebra after base change to ℤ and collapsing H 0). The monoidal structure is itself given by a polynomial functor, represented by three easily described set maps; we show that these maps are the same as those occurring in the polynomial representation of the free monad on P.
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this note we extend the Mulder-Nebeský characterization of the interval function of a connected graph to the disconnected case. One axiom needs to be adapted, but also a new axiom is needed in addition.
10
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We generalize the methods of Esperet and Zhu [6] providing an upper bound for the game colouring number of squares of graphs to obtain upper bounds for the game colouring number of m-th powers of graphs, m ≥ 3, which rely on the maximum degree and the game colouring number of the underlying graph. Furthermore, we improve these bounds in case the underlying graph is a forest.
11
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The concept of generalized k-connectivity κk(G), mentioned by Hager in 1985, is a natural generalization of the path-version of the classical connectivity. The pendant tree-connectivity τk(G) was also introduced by Hager in 1985, which is a specialization of generalized k-connectivity but a generalization of the classical connectivity. Another generalized connectivity of a graph G, named k-connectivity κ′k(G), introduced by Chartrand et al. in 1984, is a generalization of the cut-version of the classical connectivity. In this paper, we get the lower and upper bounds for the difference of κ′k(G) and τk(G) by showing that for a connected graph G of order n, if κ′k(G) ≠ n − k + 1 where k ≥ 3, then 1 ≤ κ′k(G) − τk(G) ≤ n − k; otherwise, 1 ≤ κ′k(G) ‘− τk(G) ≤ n − k + 1. Moreover, all of these bounds are sharp. We get a sharp upper bound for the 3-connectivity of the Cartesian product of any two connected graphs with orders at least 5. Especially, the exact values for some special cases are determined. Among our results, we also study the pendant tree-connectivity of Cayley graphs on Abelian groups of small degrees and obtain the exact values for τk(G), where G is a cubic or 4-regular Cayley graph on Abelian groups, 3 ≤ k ≤ n.
12
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the paper, we show that the incidence chromatic number χi of a complete k-partite graph is at most Δ + 2 (i.e., proving the incidence coloring conjecture for these graphs) and it is equal to Δ + 1 if and only if the smallest part has only one vertex (i.e., Δ = n − 1). Formally, for a complete k-partite graph G = Kr1,r2,...,rk with the size of the smallest part equal to r1 ≥ 1 we have χi(G)={Δ(G)+1if r1=1,Δ(G)+2if r1>1. $$\chi _i (G) = \left\{ {\matrix{{\Delta (G) + 1} & {{\rm{if}}\;r_1 = 1,} \cr {\Delta (G) + 2} & {{\rm{if}}\;r_1 > 1.} \cr } } \right.$$ In the paper we prove that the incidence 4-coloring problem for semicubic bipartite graphs is 𝒩𝒫-complete, thus we prove also the 𝒩𝒫-completeness of L(1, 1)-labeling problem for semicubic bipartite graphs. Moreover, we observe that the incidence 4-coloring problem is 𝒩𝒫-complete for cubic graphs, which was proved in the paper [12] (in terms of generalized dominating sets).
13
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The packing chromatic number χρ(G) of a graph G is the smallest integer k such that its set of vertices V(G) can be partitioned into k disjoint subsets V1, . . . , Vk, in such a way that every two distinct vertices in Vi are at distance greater than i in G for every i, 1 ≤ i ≤ k. For a given integer p ≥ 1, the p-corona of a graph G is the graph obtained from G by adding p degree-one neighbors to every vertex of G. In this paper, we determine the packing chromatic number of p-coronae of paths and cycles for every p ≥ 1. Moreover, by considering digraphs and the (weak) directed distance between vertices, we get a natural extension of the notion of packing coloring to digraphs. We then determine the packing chromatic number of orientations of p-coronae of paths and cycles.
14
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The Wiener index W(G) of a connected graph G, introduced by Wiener in 1947, is defined as W(G) =∑u,v∈V (G) dG(u, v), where dG(u, v) is the distance (the length a shortest path) between the vertices u and v in G. For S ⊆ V (G), the Steiner distance d(S) of the vertices of S, introduced by Chartrand et al. in 1989, is the minimum size of a connected subgraph of G whose vertex set contains S. The k-th Steiner Wiener index SWk(G) of G is defined as [...] SWk(G)=∑S⊆V(G)|S|=kd(S) $SW_k (G) = \sum\nolimits_{\mathop {S \subseteq V(G)}\limits_{|S| = k} } {d(S)}$ . We investigate the following problem: Fixed a positive integer k, for what kind of positive integer w does there exist a connected graph G (or a tree T) of order n ≥ k such that SWk(G) = w (or SWk(T) = w)? In this paper, we give some solutions to this problem.
15
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The purpose of this paper is to study W(2, 2) Lie conformal algebra, which has a free ℂ[∂]-basis {L, M} such that [...] [LλL]=(∂+2λ)L,[LλM]=(∂+2λ)M,[MλM]=0 $\begin{equation}[{L_\lambda }L] = (\partial + 2\lambda )L,[{L_\lambda }M] = (\partial + 2\lambda )M,[{M_\lambda }M] = 0]\end{equation}$ . In this paper, we study conformal derivations, central extensions and conformal modules for this Lie conformal algebra. Also, we compute the cohomology of this Lie conformal algebra with coefficients in its modules. In particular, we determine its cohomology with trivial coefficients both for the basic and reduced complexes.
16
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
As a generalization of the Sierpiński-like graphs, the subdivided-line graph Г(G) of a simple connected graph G is defined to be the line graph of the barycentric subdivision of G. In this paper we obtain a closed-form formula for the enumeration of spanning trees in Г(G), employing the theory of electrical networks. We present bounds for the largest and second smallest Laplacian eigenvalues of Г(G) in terms of the maximum degree, the number of edges, and the first Zagreb index of G. In addition, we establish upper and lower bounds for the Laplacian Estrada index of Г(G) based on the vertex degrees of G. These bounds are also connected with the number of spanning trees in Г(G).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.