Some problems involving the classical Hardy function $$ Z\left( t \right) = \zeta \left( {\frac{1} {2} + it} \right)\left( {\chi \left( {\frac{1} {2} + it} \right)} \right)^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} , \zeta \left( s \right) = \chi \left( s \right) \zeta \left( {1 - s} \right) $$, are discussed. In particular we discuss the odd moments of Z(t) and the distribution of its positive and negative values.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, we give certain upper bounds for the 2k-th moments, k ≥ 1/2, of derivatives of Dirichlet L-functions at s = 1/2 under the assumption of the Generalized Riemann Hypothesis.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the article we formalize in the Mizar system [4] preliminary facts needed to prove the Basel problem [7, 1]. Facts that are independent from the notion of structure are included here.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A rigorous elementary proof of the Basel problem [6, 1] ∑n=1∞1n2=π26 $$\sum\nolimits_{n = 1}^\infty {{1 \over {n^2 }} = {{\pi ^2 } \over 6}} $$ is formalized in the Mizar system [3]. This theorem is item #14 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We prove an explicit formula of Atkinson type for the error term in the asymptotic formula for the mean square of the product of the Riemann zeta-function and a Dirichlet polynomial. To deal with the case when coefficients of the Dirichlet polynomial are complex, we apply the idea of the first author in his study on mean values of Dirichlet L-functions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.