In this paper we study the orthogonality of Fourier coefficients of holomorphic cusp forms in the sense of large sieve inequality. We investigate the family of GL 2 cusp forms modular with respect to the congruence subgroups Γ1(q), with additional averaging over the levels q ∼ Q. We obtain the orthogonality in the range N ≪ Q 2−δ for any δ > 0, where N is the length of linear forms in the large sieve.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For an odd and squarefree level N, Kohnen proved that there is a canonically defined subspace [...] S κ + 1 2 n e w ( N ) ⊂ S κ + 1 2 ( N ) , and S κ + 1 2 n e w ( N ) and S 2 k n e w ( N ) $S_{\kappa+\frac{1}{2}}^{\mathrm{n}\mathrm{e}\mathrm{w}}(N)\subset S_{\kappa+\frac{1}{2}}(N),\,\,{\text{and}}\,\,S_{\kappa+\frac{1}{2}}^{\mathrm{n}\mathrm{e}\mathrm{w}}(N)\,\,{\text{and}}\,\,S_{2k}^{\mathrm{n}\mathrm{e}\mathrm{w}}(N)$ are isomorphic as modules over the Hecke algebra. Later he gave a formula for the product [...] a g ( m ) a g ( n ) ¯ $a_{g}(m)\overline{a_{g}(n)}$ of two arbitrary Fourier coefficients of a Hecke eigenform g of halfintegral weight and of level 4N in terms of certain cycle integrals of the corresponding form f of integral weight. To this end he first constructed Shimura and Shintani lifts, and then combining these lifts with the multiplicity one theorem he deduced the formula in [2, Theorem 3]. In this paper we will prove that there is a Hecke equivariant isomorphism between the spaces [...] S 2 k + ( p ) and S k + 1 2 ( p ) . $S_{2k}^{+}(p)\,\,{\text{and}}\,\,\mathbb{S}_{k+\frac{1}{2}}(p).$ We will also construct Shintani and Shimura lifts for these spaces, and prove a result analogous to [2, Theorem 3].
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The generating functions of divisor functions are quasimodular forms of weight 2 and their products belong to a space of quasimodular forms of higher weight. In this article, we evaluate the convolution sums ∑al+bm=nlσ(l)σ(m) $$\begin{array}{} \displaystyle\sum\limits_{al+bm=n}\,l\sigma(l)\sigma(m) \end{array} $$ for all positive integers a, b and n with ab ≤ 9 and gcd(a, b) = 1.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let F be the symmetric-square lift with Laplace eigenvalue λ F (Δ) = 1+4µ2. Suppose that |µ| ≤ Λ. We show that F is uniquely determined by the central values of Rankin-Selberg L-functions L(s, F ⋇ h), where h runs over the set of holomorphic Hecke eigen cusp forms of weight κ ≡ 0 (mod 4) with κ≍ϱ+ɛ, t9 = max {4(1+4θ)/(1−18θ), 8(2−9θ)/3(1−18θ)} for any 0 ≤ θ < 1/18 and any ∈ > 0. Here θ is the exponent towards the Ramanujan conjecture for GL2 Maass forms.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We show that the modular functions j 1,N generate function fields of the modular curve X 1(N), N ∈ {7; 8; 9; 10; 12}, and apply them to construct ray class fields over imaginary quadratic fields.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The convolution sum, [...] ∑(l,m)∈N02αl+βm=nσ(l)σ(m), $ \begin{array}{} \sum\limits_{{(l\, ,m)\in \mathbb{N}_{0}^{2}}\atop{\alpha \,l+\beta\, m=n}} \sigma(l)\sigma(m), \end{array} $ where αβ = 22, 44, 52, is evaluated for all natural numbers n. Modular forms are used to achieve these evaluations. Since the modular space of level 22 is contained in that of level 44, we almost completely use the basis elements of the modular space of level 44 to carry out the evaluation of the convolution sums for αβ = 22. We then use these convolution sums to determine formulae for the number of representations of a positive integer by the octonary quadratic forms [...] a(x12+x22+x32+x42)+b(x52+x62+x72+x82), $a\,(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2})+b\,(x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2}),$ where (a, b) = (1, 11), (1, 13).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.