In [Mineno K., Nakamura Y., Ohwada T., Characterization of the intermediate values of the triangle inequality, Math. Inequal. Appl., 2012, 15(4), 1019–1035] there was established a norm inequality which characterizes all intermediate values of the triangle inequality, i.e. C n that satisfy 0 ≤ C n ≤ Σj=1n ‖x j‖ − ‖Σj=1n x j‖, x 1,...,x n ∈ X. Here we study when this norm inequality attains equality in strictly convex Banach spaces.
A sharp companion of Ostrowski’s inequality for the Riemann-Stieltjes integral [...] ∫abf(t) du(t) $\int_a^b {f(t)\;du(t)} $ , where f is assumed to be of r-H-Hölder type on [a, b] and u is of bounded variation on [a, b], is proved. Applications to the approximation problem of the Riemann-Stieltjes integral in terms of Riemann-Stieltjes sums are also pointed out.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, we present several new and generalized Hermite-Hadamard type inequalities for s-convex as well as s-concave functions via classical and Riemann-Liouville fractional integrals. As applications, we provide new error estimations for the trapezoidal formula.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.