We introduce anti-invariant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds. We give an example, investigate the geometry of foliations which are arisen from the definition of a Riemannian submersion and check the harmonicity of such submersions. We also find necessary and sufficient conditions for a Langrangian Riemannian submersion, a special anti-invariant Riemannian submersion, to be totally geodesic. Moreover, we obtain decomposition theorems for the total manifold of such submersions.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let (M = G/H;g)denote a four-dimensional pseudo-Riemannian generalized symmetric space and g = m + h the corresponding decomposition of the Lie algebra g of G. We completely determine the harmonicity properties of vector fields belonging to m. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. Vector fields defining harmonic maps are also classified, and the energy of these vector fields is explicitly calculated.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.