Being expected as a Banach space substitute of the orthogonal projections on Hilbert spaces, generalized n-circular projections also extend the notion of generalized bicontractive projections on JB*-triples. In this paper, we study some geometric properties of JB*-triples related to them. In particular, we provide some structure theorems of generalized n-circular projections on an often mentioned special case of JB*-triples, i.e., Hilbert C*-modules over abelian C*-algebras C0(Ω).
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let G be the Banach-Lie group of all holomorphic automorphisms of the open unit ball $$B_\mathfrak{A} $$ in a J*-algebra $$\mathfrak{A}$$ of operators. Let $$\mathfrak{F}$$ be the family of all collectively compact subsets W contained in $$B_\mathfrak{A} $$ . We show that the subgroup F ⊂ G of all those g ∈ G that preserve the family $$\mathfrak{F}$$ is a closed Lie subgroup of G and characterize its Banach-Lie algebra. We make a detailed study of F when $$\mathfrak{A}$$ is a Cartan factor.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The Banach-Lie algebras ℌκ of all holomorphic infinitesimal isometries of the classical symmetric complex Banach manifolds of compact type (κ = 1) and non compact type (κ = −1) associated with a complex JB*-triple Z are considered and the Lie ideal structure of ℌκ is studied.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.