This paper establishes conditions that secure the almost sure upper and lower bounds for a particular normalized weighted sum of independent nonnegative random variables. These random variables do not possess a finite first moment so these results are not typical. These mild conditions allow us to show that the almost sure upper limit is infinity while the almost sure lower bound is one.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the present paper, we have established the complete convergence for weighted sums of pairwise independent random variables, from which the rate of convergence of moving average processes is deduced.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Our goal is to state and prove the almost sure central limit theorem for maxima (Mn) of X1, X2, ..., Xn, n ∈ ℕ, where (Xi) forms a stochastic process of identically distributed r.v.’s of the continuous type, such that, for any fixed n, the family of r.v.’s (X1, ...,Xn) has the Archimedean copula CΨ.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We consider a centered Gaussian random field X = {X t : t ∈ T} with values in a Banach space $$\mathbb{B}$$ defined on a parametric set T equal to ℝm or ℤm. It is supposed that the distribution of X t is independent of t. We consider the asymptotic behavior of closed convex hulls W n = conv{X t : t ∈ T n}, where (T n) is an increasing sequence of subsets of T. We show that under some conditions of weak dependence for the random field under consideration and some sequence (b n)n≥1 with probability 1, (in the sense of Hausdorff distance), where the limit set is the concentration ellipsoid of . The asymptotic behavior of the mathematical expectations Ef(W n), where f is some function, is also studied.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.